25,976 research outputs found

    Security Challenges and Efficient Security Solutions for Ad-Hoc Wireless Sensor Network

    Get PDF
    Wireless sensor networks sense the information, process them locally and communicate it to the outside world via satellite or Internet. Wireless Sensor Networks (WSNs) use tiny, inexpensive sensor nodes with several distinguishing characteristics: they have very low processing power and radio ranges, permit very low energy consumption and perform limited and specific monitoring and sensing functions. Wireless sensor networks (WSN) are widely used for applications such as environment monitoring, habitat monitoring, forest fire control, border surveillance and health monitoring due to their capability of establishing communications among peer nodes in a self-organizing and adapting manner, without any infrastructure. Sensor networks use radio frequencies as a communication medium, which is vulnerable of all active and passive attacks from adversaries. The sensor net-work must be protected to avoid attacks from external parties. This protection is provided by the security primitives. This paper mainly concerns with problems associated in developing security protocols for wireless sensor networks, their requirements, and different types of attacks on sensor networks. This paper describes secure solutions for collecting and processing data in Wireless Sensor Networks (WSNs). Adequate security capabilities for medium and large scale WSNs are a hard but necessary goal to achieve to prepare these networks for the market. The paper also includes security and reliability challenges and also security solution for WSNs

    Experimental impulse radio IEEE 802.15.4a UWB based wireless sensor localization technology: Characterization, reliability and ranging

    Get PDF
    Ultra Wide Band (UWB) transmission has recently been the object of considerable attention in the field of next generation location aware wireless sensor networks. This is due to its fine time resolution, energy efficient and robustness to interference in harsh environments. This paper presents a thorough applied examination of prototype IEEE 802.15.4a impulse UWB transceiver technology to quantify the effect of line of sight (LOS) and non line of sight (NLOS) ranging in real indoor and outdoor environments. Results included draw on an extensive array of experiments that fully characterize the 802.15.4a UWB transceiver technology, its reliability and ranging capabilities for the first time. A new two way (TW) ranging protocol is proposed. The goal of this work is to validate the technology as a dependable wireless communications mechanism for the subset of sensor network localization applications where reliability and precision positions are key concerns

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Fly-By-Wireless for Next Generation Aircraft: Challenges and Potential solutions

    Get PDF
    ”Fly-By-Wireless” paradigm based on wireless connectivity in aircraft has the potential to improve efficiency and flexibility, while reducing weight, fuel consumption and maintenance costs. In this paper, first, the opportunities and challenges for wireless technologies in safety-critical avionics context are discussed. Then, the assessment of such technologies versus avionics requirements is provided in order to select the most appropriate one for a wireless aircraft application. As a result, the design of a Wireless Avionics Network based on Ultra WideBand technology is investigated, considering the issues of determinism, reliability and security

    Social issues of power harvesting as key enables of WSN in pervasive computing

    No full text
    Pervasive systems have gained popularity and open the door to new applications that will improve the quality of life of the users. Additionally, the implementation of such systems over an infrastructure of Wireless Sensor Networks has been proven to be very powerful. To deal with the WSN problems related to the battery of the elements or nodes that constitute the WSN, Power Harvesting techniques arise as good candidates. With PH each node can extract the energy from the surrounding environment. However, this energy source could not be constant, affecting the continuity and quality of the services provided. This behavior can have a negative impact on the user's perception about the system, which could be perceived as unreliable or faulty. In the current paper, some related works regarding pervasive systems within the home environment are referenced to extrapolate the conclusions and problems to the paradigm of Power Harvesting Pervasive Systems from the user perspective. Besides, the paper speculates about the approach and methods to overcome these potential problems and presents the design trends that could be followed.<br/

    Analysis of energy efficient connected target coverage algorithm for static and dynamic nodes in IWSNs

    Get PDF
    Today breakthroughs in wireless technologies have greatly spurred the emergence of industrial wireless sensor networks (IWSNs).To facilitate the adaptation of IWSNs to industrial applications, concerns about networks full coverage and connectivity must be addressed to fulfill reliability and real time requirements. Although connected target coverage algorithms have been studied notice both limitations and applicability of various coverage areas from an industry viewpoint. In this paper is discuss the two energy efficiency connected target coverage (CTC) algorithms CWGC(Communication Weighted Greedy Cover) and OTTC(Overlapped Target and Connected Coverage) algorithm based on dynamic node to resolve the problem of Coverage improvement. This paper uses the simulation in MATLAB represent the performance of two CTC algorithms with Dynamic node to improve network lifetime and low energy consumption and quality of service. Compare the dynamic nodes results with static nodes result

    Traffic eavesdropping based scheme to deliver time-sensitive data in sensor networks

    Get PDF
    Due to the broadcast nature of wireless channels, neighbouring sensor nodes may overhear packets transmissions from each other even if they are not the intended recipients of these transmissions. This redundant packet reception leads to unnecessary expenditure of battery energy of the recipients. Particularly in highly dense sensor networks, overhearing or eavesdropping overheads can constitute a significant fraction of the total energy consumption. Since overhearing of wireless traffic is unavoidable and sometimes essential, a new distributed energy efficient scheme is proposed in this paper. This new scheme exploits the inevitable overhearing effect as an effective approach in order to collect the required information to perform energy efficient delivery for data aggregation. Based on this approach, the proposed scheme achieves moderate energy consumption and high packet delivery rate notwithstanding the occurrence of high link failure rates. The performance of the proposed scheme is experimentally investigated a testbed of TelosB motes in addition to ns-2 simulations to validate the performed experiments on large-scale network
    • 

    corecore