1,322 research outputs found

    On relaxing the constraints in pairwise compatibility graphs

    Full text link
    A graph GG is called a pairwise compatibility graph (PCG) if there exists an edge weighted tree TT and two non-negative real numbers dmind_{min} and dmaxd_{max} such that each leaf lul_u of TT corresponds to a vertex u∈Vu \in V and there is an edge (u,v)∈E(u,v) \in E if and only if dmin≤dT(lu,lv)≤dmaxd_{min} \leq d_T (l_u, l_v) \leq d_{max} where dT(lu,lv)d_T (l_u, l_v) is the sum of the weights of the edges on the unique path from lul_u to lvl_v in TT. In this paper we analyze the class of PCG in relation with two particular subclasses resulting from the the cases where \dmin=0 (LPG) and \dmax=+\infty (mLPG). In particular, we show that the union of LPG and mLPG does not coincide with the whole class PCG, their intersection is not empty, and that neither of the classes LPG and mLPG is contained in the other. Finally, as the graphs we deal with belong to the more general class of split matrogenic graphs, we focus on this class of graphs for which we try to establish the membership to the PCG class.Comment: 12 pages, 7 figure

    Elastic Registration of Geodesic Vascular Graphs

    Get PDF
    Vascular graphs can embed a number of high-level features, from morphological parameters, to functional biomarkers, and represent an invaluable tool for longitudinal and cross-sectional clinical inference. This, however, is only feasible when graphs are co-registered together, allowing coherent multiple comparisons. The robust registration of vascular topologies stands therefore as key enabling technology for group-wise analyses. In this work, we present an end-to-end vascular graph registration approach, that aligns networks with non-linear geometries and topological deformations, by introducing a novel overconnected geodesic vascular graph formulation, and without enforcing any anatomical prior constraint. The 3D elastic graph registration is then performed with state-of-the-art graph matching methods used in computer vision. Promising results of vascular matching are found using graphs from synthetic and real angiographies. Observations and future designs are discussed towards potential clinical applications

    All graphs with at most seven vertices are Pairwise Compatibility Graphs

    Full text link
    A graph GG is called a pairwise compatibility graph (PCG) if there exists an edge-weighted tree TT and two non-negative real numbers dmind_{min} and dmaxd_{max} such that each leaf lul_u of TT corresponds to a vertex u∈Vu \in V and there is an edge (u,v)∈E(u,v) \in E if and only if dmin≤dT,w(lu,lv)≤dmaxd_{min} \leq d_{T,w} (l_u, l_v) \leq d_{max} where dT,w(lu,lv)d_{T,w} (l_u, l_v) is the sum of the weights of the edges on the unique path from lul_u to lvl_v in TT. In this note, we show that all the graphs with at most seven vertices are PCGs. In particular all these graphs except for the wheel on 7 vertices W7W_7 are PCGs of a particular structure of a tree: a centipede.Comment: 8 pages, 2 figure

    Relating threshold tolerance graphs to other graph classes

    Get PDF
    A graph G=(V, E) is a threshold tolerance if it is possible to associate weights and tolerances with each node of G so that two nodes are adjacent exactly when the sum of their weights exceeds either one of their tolerances. Threshold tolerance graphs are a special case of the well-known class of tolerance graphs and generalize the class of threshold graphs which are also extensively studied in literature. In this note we relate the threshold tolerance graphs with other important graph classes. In particular we show that threshold tolerance graphs are a proper subclass of co-strongly chordal graphs and strictly include the class of co-interval graphs. To this purpose, we exploit the relation with another graph class, min leaf power graphs (mLPGs)

    The matching relaxation for a class of generalized set partitioning problems

    Full text link
    This paper introduces a discrete relaxation for the class of combinatorial optimization problems which can be described by a set partitioning formulation under packing constraints. We present two combinatorial relaxations based on computing maximum weighted matchings in suitable graphs. Besides providing dual bounds, the relaxations are also used on a variable reduction technique and a matheuristic. We show how that general method can be tailored to sample applications, and also perform a successful computational evaluation with benchmark instances of a problem in maritime logistics.Comment: 33 pages. A preliminary (4-page) version of this paper was presented at CTW 2016 (Cologne-Twente Workshop on Graphs and Combinatorial Optimization), with proceedings on Electronic Notes in Discrete Mathematic

    Clustering by soft-constraint affinity propagation: Applications to gene-expression data

    Full text link
    Motivation: Similarity-measure based clustering is a crucial problem appearing throughout scientific data analysis. Recently, a powerful new algorithm called Affinity Propagation (AP) based on message-passing techniques was proposed by Frey and Dueck \cite{Frey07}. In AP, each cluster is identified by a common exemplar all other data points of the same cluster refer to, and exemplars have to refer to themselves. Albeit its proved power, AP in its present form suffers from a number of drawbacks. The hard constraint of having exactly one exemplar per cluster restricts AP to classes of regularly shaped clusters, and leads to suboptimal performance, {\it e.g.}, in analyzing gene expression data. Results: This limitation can be overcome by relaxing the AP hard constraints. A new parameter controls the importance of the constraints compared to the aim of maximizing the overall similarity, and allows to interpolate between the simple case where each data point selects its closest neighbor as an exemplar and the original AP. The resulting soft-constraint affinity propagation (SCAP) becomes more informative, accurate and leads to more stable clustering. Even though a new {\it a priori} free-parameter is introduced, the overall dependence of the algorithm on external tuning is reduced, as robustness is increased and an optimal strategy for parameter selection emerges more naturally. SCAP is tested on biological benchmark data, including in particular microarray data related to various cancer types. We show that the algorithm efficiently unveils the hierarchical cluster structure present in the data sets. Further on, it allows to extract sparse gene expression signatures for each cluster.Comment: 11 pages, supplementary material: http://isiosf.isi.it/~weigt/scap_supplement.pd
    • …
    corecore