106 research outputs found

    The Parameterised Complexity of List Problems on Graphs of Bounded Treewidth

    Get PDF
    We consider the parameterised complexity of several list problems on graphs, with parameter treewidth or pathwidth. In particular, we show that List Edge Chromatic Number and List Total Chromatic Number are fixed parameter tractable, parameterised by treewidth, whereas List Hamilton Path is W[1]-hard, even parameterised by pathwidth. These results resolve two open questions of Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen (2011).Comment: Author final version, to appear in Information and Computation. Changes from previous version include improved literature references and restructured proof in Section

    Modeling and Solution Methodologies for Mixed-Model Sequencing in Automobile Industry

    Get PDF
    The global competitive environment leads companies to consider how to produce high-quality products at a lower cost. Mixed-model assembly lines are often designed such that average station work satisfies the time allocated to each station, but some models with work-intensive options require more than the allocated time. Sequencing varying models in a mixed-model assembly line, mixed-model sequencing (MMS), is a short-term decision problem that has the objective of preventing line stoppage resulting from a station work overload. Accordingly, a good allocation of models is necessary to avoid work overload. The car sequencing problem (CSP) is a specific version of the MMS that minimizes work overload by controlling the sequence of models. In order to do that, CSP restricts the number of work-intensive options by applying capacity rules. Consequently, the objective is to find the sequence with the minimum number of capacity rule violations. In this dissertation, we provide exact and heuristic solution approaches to solve different variants of MMS and CSP. First, we provide five improved lower bounds for benchmark CSP instances by solving problems optimally with a subset of options. We present four local search metaheuristics adapting efficient transformation operators to solve CSP. The computational experiments show that the Adaptive Local Search provides a significant advantage by not requiring tuning on the operator weights due to its adaptive control mechanism. Additionally, we propose a two-stage stochastic program for the mixed-model sequencing (MMS) problem with stochastic product failures, and provide improvements to the second-stage problem. To tackle the exponential number of scenarios, we employ the sample average approximation approach and two solution methodologies. On one hand, we develop an L-shaped decomposition-based algorithm, where the computational experiments show its superiority over solving the deterministic equivalent formulation with an off-the-shelf solver. We also provide a tabu search algorithm in addition to a greedy heuristic to tackle case study instances inspired by our car manufacturer partner. Numerical experiments show that the proposed solution methodologies generate high-quality solutions by utilizing a sample of scenarios. Particularly, a robust sequence that is generated by considering car failures can decrease the expected work overload by more than 20\% for both small- and large-sized instances. To the best of our knowledge, this is the first study that considers stochastic failures of products in MMS. Moreover, we propose a two-stage stochastic program and formulation improvements for a mixed-model sequencing problem with stochastic product failures and integrated reinsertion process. We present a bi-objective evolutionary optimization algorithm, a two-stage bi-objective local search algorithm, and a hybrid local search integrated evolutionary optimization algorithm to tackle the proposed problem. Numerical experiments over a case study show that while the hybrid algorithm provides a better exploration of the Pareto front representation and more reliable solutions in terms of waiting time of failed vehicles, the local search algorithm provides more reliable solutions in terms of work overload objective. Finally, dynamic reinsertion simulations are executed over industry-inspired instances to assess the quality of the solutions. The results show that integrating the reinsertion process in addition to considering vehicle failures can keep reducing the work overload by around 20\% while significantly decreasing the waiting time of the failed vehicles

    "I updated the <ref>": The evolution of references in the English Wikipedia and the implications for altmetrics

    Get PDF
    With this work, we present a publicly available data set of the history of all the references (more than 55 million) ever used in the English Wikipedia until June 2019. We have applied a new method for identifying and monitoring references in Wikipedia, so that for each reference we can provide data about associated actions: creation, modifications, deletions, and reinsertions. The high accuracy of this method and the resulting data set was confirmed via a comprehensive crowdworker labeling campaign. We use the data set to study the temporal evolution of Wikipedia references as well as users’ editing behavior. We find evidence of a mostly productive and continuous effort to improve the quality of references: There is a persistent increase of reference and document identifiers (DOI, PubMedID, PMC, ISBN, ISSN, ArXiv ID) and most of the reference curation work is done by registered humans (not bots or anonymous editors). We conclude that the evolution of Wikipedia references, including the dynamics of the community processes that tend to them, should be leveraged in the design of relevance indexes for altmetrics, and our data set can be pivotal for such an effort

    Dynamic Data Structures for k-Nearest Neighbor Queries

    Get PDF
    Our aim is to develop dynamic data structures that support kk-nearest neighbors (kk-NN) queries for a set of nn point sites in the plane in O(f(n)+k)O(f(n) + k) time, where f(n)f(n) is some polylogarithmic function of nn. The key component is a general query algorithm that allows us to find the kk-NN spread over tt substructures simultaneously, thus reducing an O(tk)O(tk) term in the query time to O(k)O(k). Combining this technique with the logarithmic method allows us to turn any static kk-NN data structure into a data structure supporting both efficient insertions and queries. For the fully dynamic case, this technique allows us to recover the deterministic, worst-case, O(log2n/loglogn+k)O(\log^2n/\log\log n +k) query time for the Euclidean distance claimed before, while preserving the polylogarithmic update times. We adapt this data structure to also support fully dynamic \emph{geodesic} kk-NN queries among a set of sites in a simple polygon. For this purpose, we design a shallow cutting based, deletion-only kk-NN data structure. More generally, we obtain a dynamic planar kk-NN data structure for any type of distance functions for which we can build vertical shallow cuttings. We apply all of our methods in the plane for the Euclidean distance, the geodesic distance, and general, constant-complexity, algebraic distance functions

    Time Series Similarity Search in Distributed Key-Value Data Stores Using R-Trees

    Get PDF
    Time series data are sequences of data points collected at certain time intervals. The advance in mobile and sensor technologies has led to rapid growth in the available amount of time series data. The ability to search large time series data sets can be extremely useful in many applications. In healthcare, a system monitoring vital signals can perform a search against the past data and identify possible health threatening conditions. In engineering, a system can analyze performances of complicated equipment and identify possible failure situations or needs of maintenance based on historical data. Existing search methods for time series data are limited in many ways. Systems utilizing memory-bound or disk-bound indexes are restricted by the resources of a single machine or hard drive. Systems that do not use indexes must search through the entire database whenever a search is requested. The proposed system uses multidimensional index in the distributed storage environment to break the bound of one physical machine and allow for high data scalability. Utilizing an index allows the system to locate the patterns similar to the query without having to examine the entire dataset, which can significantly reduce the amount of computing resources required. The system uses an Apache HBase distributed key-value database to store the index and time series data across a cluster of machines. Evaluations were conducted to examine the system’s performance using synthesized data up to 30 million data points. The evaluation results showed that, despite some drawbacks inherited from an R-tree data structure, the system can efficiently search and retrieve patterns in large time series datasets
    corecore