440 research outputs found

    Boundary perception guidance: A scribble-supervised semantic segmentation approach

    Full text link
    © 2019 International Joint Conferences on Artificial Intelligence. All rights reserved. Semantic segmentation suffers from the fact that densely annotated masks are expensive to obtain. To tackle this problem, we aim at learning to segment by only leveraging scribbles that are much easier to collect for supervision. To fully explore the limited pixel-level annotations from scribbles, we present a novel Boundary Perception Guidance (BPG) approach, which consists of two basic components, i.e. prediction refinement and boundary regression. Specifically, the prediction refinement progressively makes a better segmentation by adopting an iterative upsampling and a semantic feature enhancement strategy. In the boundary regression, we employ class-agnostic edge maps for supervision to effectively guide the segmentation network in localizing the boundaries between different semantic regions, leading to producing fine-grained representation of feature maps for semantic segmentation. Experimental results on the PASCAL VOC 2012 demonstrate the proposed BPG achieves mIoU of 73.2% without fully connected Conditional Random Field (CRF) and 76.0% with CRF, setting up the new state-of-the-art in literature

    Adversarial Deformation Regularization for Training Image Registration Neural Networks

    Get PDF
    We describe an adversarial learning approach to constrain convolutional neural network training for image registration, replacing heuristic smoothness measures of displacement fields often used in these tasks. Using minimally-invasive prostate cancer intervention as an example application, we demonstrate the feasibility of utilizing biomechanical simulations to regularize a weakly-supervised anatomical-label-driven registration network for aligning pre-procedural magnetic resonance (MR) and 3D intra-procedural transrectal ultrasound (TRUS) images. A discriminator network is optimized to distinguish the registration-predicted displacement fields from the motion data simulated by finite element analysis. During training, the registration network simultaneously aims to maximize similarity between anatomical labels that drives image alignment and to minimize an adversarial generator loss that measures divergence between the predicted- and simulated deformation. The end-to-end trained network enables efficient and fully-automated registration that only requires an MR and TRUS image pair as input, without anatomical labels or simulated data during inference. 108 pairs of labelled MR and TRUS images from 76 prostate cancer patients and 71,500 nonlinear finite-element simulations from 143 different patients were used for this study. We show that, with only gland segmentation as training labels, the proposed method can help predict physically plausible deformation without any other smoothness penalty. Based on cross-validation experiments using 834 pairs of independent validation landmarks, the proposed adversarial-regularized registration achieved a target registration error of 6.3 mm that is significantly lower than those from several other regularization methods.Comment: Accepted to MICCAI 201
    • …
    corecore