2,479 research outputs found

    A Survey of Clock Synchronization Over Packet-Switched Networks

    Get PDF
    Clock synchronization is a prerequisite for the realization of emerging applications in various domains such as industrial automation and the intelligent power grid. This paper surveys the standardized protocols and technologies for providing synchronization of devices connected by packet-switched networks. A review of synchronization impairments and the state-of-the-art mechanisms to improve the synchronization accuracy is then presented. Providing microsecond to sub-microsecond synchronization accuracy under the presence of asymmetric delays in a cost-effective manner is a challenging problem, and still an open issue in many application scenarios. Further, security is of significant importance for systems where timing is critical. The security threats and solutions to protect exchanged synchronization messages are also discussed

    Evaluation of IEEE 802.1 Time Sensitive Networking Performance for Microgrid and Smart Grid Power System Applications

    Get PDF
    Proliferation of distributed energy resources and the importance of smart energy management has led to increased interest in microgrids. A microgrid is an area of the grid that can be disconnected and operated independently from the main grid when required and can generate some or all of its own energy needs with distributed energy resources and battery storage. This allows for the microgrid area to continue operating even when the main grid is unavailable. In addition, often a microgrid can utilize waste heat from energy generation to drive thermal loads, further improving energy utilization. This leads to increased reliability and overall efficiency in the microgrid area.As microgrids (and by extension the smart grid) become more widespread, new methods of communication and control are required to aid in management of many different distributed entities. One such communication architecture that may prove useful is the set of IEEE 802.1 Time Sensitive Networking (TSN) standards. These standards specify improvements and new capabilities for LAN based communication networks that previously made them unsuitable for widespread deployment in a power system setting. These standards include specifications for low latency guarantees, clock synchronization, data frame redundancy, and centralized system administration. These capabilities were previously available on proprietary or application specific solutions. However, they will now be available as part of the Ethernet standard, enabling backwards compatibility with existing network architecture and support with future advances.Two of the featured standards, IEEE 802.1AS (governing time-synchronization) and IEEE 802.1Qbv (governing time aware traffic shaping), will be tested and evaluated for their potential utility in power systems and microgrid applications. These tests will measure the latency achievable using TSN over a network at various levels of congestion and compare these results with UDP and TCP protocols. In addition, the ability to use synchronized clocks to generate waveforms for microgrid inverter synchronization will be explored

    Secure GPS clock synchronization in smart grids

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2015As smart grids resultaram da integração da rede elétrica atual no mundo digital. Isso traz várias vantagens às redes elétricas, como uma instalação, configuração e manutenção mais simples e eficiente, mas também a fácil integração na rede de novas tecnologias. Enquanto as redes elétricas continuam a crescer em dimensão e complexidade, elas tornam-se mais importantes para a sociedade e subsequentemente mais sujeitas a ataques distintos. Alguns dos objetivos mais importantes da smart grid são: acomodar uma grande variedade de tecnologias de produção de eletricidade como a eólica, solar e geotérmica; ser resiliente a ataques físicos e ciber-ataques; ter mecanismos de deteção, análise e resposta automática a incidentes; dar mais poder ao consumidor final sobre como e quando a energia pode ser comprada ou consumida. Para implementar actividades relacionadas com a monitorização do estado da smart grid, vários componentes especializados são geograficamente distribuídos pela rede. Um dos dispositivos críticos é o Phase Measurement Unit (Unidade de Medição de Fase) (PMU). Este dispositivo é usado para estimar o estado da smart grid num determinado momento, recolhendo várias métricas sobre a qualidade do sinal elétrico. Para se conseguir criar uma imagem geral da rede inteira, todos estes dispositivos necessitam de ser sincronizados no tempo, assegurando assim que as medições são efetuadas aproximadamente no mesmo instante. A sincronização do tempo desempenha um papel crucial na estabilidade e no funcionamento correto de todos os componentes da smart grid. Dada a importância da sincronização de tempo, e a falta de qualquer tipo de proteção nas soluções atuais, este sistema torna-se num alvo potencial para atacantes. Em conformidade com os standards, a precisão dos relógios dos PMU’s devem ter um erro máximo na ordem dos 30 µs. Isso garante que a informação recolhida sobre o estado da smart grid é válida. Hoje em dia este requisito é satisfeito usando equipamentos GPS em cada sítio onde se encontra um PMU. Quando o GPS foi concebido, não se pensou que podia vir a ter o sucesso e o impacto atual e, portanto, assegurar a sua segurança não foi um ponto importante. Ao longo do tempo passou a ser usado em infraestruturas críticas, o que introduz eventuais problemas graves de segurança. As smart grids são uma destas estruturas críticas onde o GPS está a ser usado sem qualquer tipo de proteção. Atualmente existe também uma versão segura do GPS que é empregue pelas forças militares. Os dispositivos que conseguem decifrar este sinal só estão disponíveis ao exército. Por além disso, todos os detalhes sobre o funcionamento do algoritmo de cifra são mantidos em segredo. Ao longo dos anos foram desenvolvidos vários tipos de ataques ao GPS. O mais básico é o Blocking que consiste simplesmente em impedir a comunicação entre a antena do recetor e o sinal GPS. Isso pode ser conseguido de uma maneira tão simples como tapar a antena com um bocado de metal. Um ataque que tenta também quebrar a ligação com o satélite é o Jamming. A ideia deste ataque é introduzir ruído suficiente para que o recetor não consiga distinguir o sinal original. Estes dois tipos de ataques só conseguem perturbar o funcionamento do recetor GPS. Um tipo de ataque mais potente é o Spoofing. Este ataque consegue modificar o sinal original vindo do satélite de forma a enganar o recetor. Assim é possível fazer com que o recetor GPS mostre uma posição¸ ou tempo incorretos. Nesta dissertação também foi analisada uma evolução deste ataque que tem como alvo a alteração ilegítima dos dados contidos no sinal. Isso pode fazer como que o recetor falhe ou deixe de poder ser usado. Os algoritmos de sincronização de relógios existentes hoje em dia, nomeadamente o Network Time Protocol (NTP) e o Precision Time Protocol (PTP), não são suficientemente robustos, em termos de segurança ou precisão, para serem utilizados na smart grid. O NTP foi concebido para a sincronização de relógios em redes de grande escala mas não consegue fornecer a precisão necessária para os requisitos da smart grid. Por outro lado temos o PTP que consegue atingir uma precisão na ordem dos nanosegundos em certas condições, mas é muito sensível a atrasos e oscilações na rede. Isso faz com que o PTP só consiga garantir uma precisão de tempo na ordem dos nanosegundos em redes de pequena escala. A smart grid usa uma rede de alta velocidade com relativamente pouco tráfego, o que torna o PTP uma possível solução para algumas partes dessa rede. Em termos de segurançaa, o PTP não está preparado para ser utilizado num ambiente tão crítico como a smart grid, sendo suscetível a ataques. O foco desta investigação é encontrar um algoritmo resiliente a faltas, capaz de satisfazer os requisitos de sincronização de tempo necessários para o correto funcionamento da smart grid. Foi desenvolvida uma solução baseada no PTP, que consegue cumprir os requisitos de precisão temporal na smart grid e também consegue mitigar todos os tipos de ataques ao GPS que foram identificados. Para além disso, a solução também permite reduzir o número de recetores de GPS necessários para o funcionamento correto da smart grid.Smart grids resulted from the integration of computer technologies into the current power grid. This brings several advantages, allowing for a faster and more efficient deployment, configuration and maintenance, as well as easy integration of new energy sources (e.g., wind and solar). As smart grids continue to grow in size and complexity, they become subject to failures and attacks from different sources. Time synchronization plays a crucial role in the stability and correct functioning of many grid components. Considering how sensitive time synchronization is, the tight restrictions imposed for correct operation and the lack of any kind of protection, makes this service a potential prime target for attackers. Today most of the time synchronization requirements are met using relatively expensive GPS hardware placed in some locations of the smart grid. When GPS was first devised, nobody could have predicted the success and the impact that it would have and therefore, security was never an important concern. Through the years, it slowly gained entrance into more critical systems, where it was never intended to be used, which can lead to serious security problems. The smart grid is just one of these critical systems where GPS is being employed without any kind of protection. The focus of this research is trying to solve this problem, by proposing a more secure and robust clock synchronization algorithm. A solution based on the Precision Time Protocol (PTP) was developed that manages to fulfill the time synchronization requirements of the smart grid and is also capable of mitigating all types of identified GPS attacks. As an added benefit, the solution may also reduce the number of GPS receivers necessary for the correct operation of the smart grid, contributing to decrease costs

    IEEE 1588 High Accuracy Default Profile: Applications and Challenges

    Get PDF
    Highly accurate synchronization has become a major requirement because of the rise of distributed applications, regulatory requests and position, navigation and timing backup needs. This fact has led to the development of new technologies which fulfill the new requirements in terms of accuracy and dependability. Nevertheless, some of these novel proposals have lacked determinism, robustness, interoperability, deployability, scalability or management tools preventing them to be extensively used in real industrial scenarios. Different segments require accurate timing information over a large number of nodes. Due to the high availability and low price of global satellite-based time references, many critical distributed facilities depend on them. However, the vulnerability to jamming or spoofing represents a well-known threat and back-up systems need to be deployed to mitigate it. The recently approved draft standard IEEE 1588-2019 includes the High Accuracy Default Precision Time Protocol Profile which is intensively based on the White Rabbit protocol. White Rabbit is an extension of current IEEE 1588-2008 network synchronization protocol for sub-nanosecond synchronization. This approach has been validated and intensively used during the last years. This paper revises the pre-standard protocol to expose the challenges that the High Accuracy profile will find after its release and covers existing applications, promising deployments and the technological roadmap, providing hints and an overview of features to be studied. The authors review different issues that have prevented the industrial adoption of White Rabbit in the past and introduce the latest developments that will facilitate the next IEEE 1588 High Accuracy extensive adoption.This work was supported in part by the AMIGA6 under Grant AYA2015-65973-C3-2-R, in part by the AMIGA7 under Grant RTI2018-096228-B-C32, and in part by the Torres Quevedo under Grant PTQ2018-010198

    Localization of sound sources : a systematic review

    Get PDF
    Sound localization is a vast field of research and advancement which is used in many useful applications to facilitate communication, radars, medical aid, and speech enhancement to but name a few. Many different methods are presented in recent times in this field to gain benefits. Various types of microphone arrays serve the purpose of sensing the incoming sound. This paper presents an overview of the importance of using sound localization in different applications along with the use and limitations of ad-hoc microphones over other microphones. In order to overcome these limitations certain approaches are also presented. Detailed explanation of some of the existing methods that are used for sound localization using microphone arrays in the recent literature is given. Existing methods are studied in a comparative fashion along with the factors that influence the choice of one method over the others. This review is done in order to form a basis for choosing the best fit method for our use

    Time Accuracy De-Synchronisation Attacks Against IEC 60870-5-104 and IEC 61850 Protocols

    Get PDF

    MACsec Layer 2 Security in HSR Rings in Substation Automation Systems

    Get PDF
    The smart-grid concept takes the communications from the enclosed and protected environment of a substation to the wider city or nationwide area. In this environment, cyber security takes a key role in order to secure the communications. The challenge is to be able to secure the grid without impacting the latency while, at the same time, maintaining compatibility with older devices and non secure services. At the lower level, added security must not interfere with the redundancy and the latency required for the real-time substation automation communications. This paper studies how to integrate IEEE MAC Security standard (MACsec) in the substation environment, especially when used in substation system communications that have stringent response time requirements and zero recovery time as defined in IEC 62439-3.This work has been supported by the Ministerio de Economia y Competitividad of Spain within the project TEC2014-53785-R, and it has been carried out inside the Research and Education Unit UFI11/16 of the UPV/EHU and partially supported by the Basque Government within the funds for research groups of the Basque University system IT978-16 and within the project TFactory ER-2014/0016. In addition, FEDER funds and UPV/EHU Ph.D. scholarship funding are acknowledged

    A realistic evaluation of indoor robot position tracking systems: The IPIN 2016 competition experience

    Get PDF
    We report a novel open competition aimed at evaluating accurate robot position tracking in indoor environments. The competition was organized within the IPIN 2016 (Indoor Positioning and Indoor Navigation international Conference). Here, we describe the competition, the competitors and their final results. The challenges of this new competition included: tracking an industrial robot following an unknown path but with a defined ground-truth, and open positioning system to be deployed on-site, with no restrictions apart from those related to safety issues. Our aim here is to provide sufficient detail to serve as a solid basis for future competition initiatives with a similar scope, using common metrics and objective evaluation procedures. In addition, the real systems evaluated represent state-of-the-art performance, and thus offer interesting solutions to the problem posed in the competition.Agencia Estatal de InvestigaciónUniversidad de Alcal
    corecore