2,643 research outputs found

    Distributed Recursive Least-Squares: Stability and Performance Analysis

    Full text link
    The recursive least-squares (RLS) algorithm has well-documented merits for reducing complexity and storage requirements, when it comes to online estimation of stationary signals as well as for tracking slowly-varying nonstationary processes. In this paper, a distributed recursive least-squares (D-RLS) algorithm is developed for cooperative estimation using ad hoc wireless sensor networks. Distributed iterations are obtained by minimizing a separable reformulation of the exponentially-weighted least-squares cost, using the alternating-minimization algorithm. Sensors carry out reduced-complexity tasks locally, and exchange messages with one-hop neighbors to consent on the network-wide estimates adaptively. A steady-state mean-square error (MSE) performance analysis of D-RLS is conducted, by studying a stochastically-driven `averaged' system that approximates the D-RLS dynamics asymptotically in time. For sensor observations that are linearly related to the time-invariant parameter vector sought, the simplifying independence setting assumptions facilitate deriving accurate closed-form expressions for the MSE steady-state values. The problems of mean- and MSE-sense stability of D-RLS are also investigated, and easily-checkable sufficient conditions are derived under which a steady-state is attained. Without resorting to diminishing step-sizes which compromise the tracking ability of D-RLS, stability ensures that per sensor estimates hover inside a ball of finite radius centered at the true parameter vector, with high-probability, even when inter-sensor communication links are noisy. Interestingly, computer simulations demonstrate that the theoretical findings are accurate also in the pragmatic settings whereby sensors acquire temporally-correlated data.Comment: 30 pages, 4 figures, submitted to IEEE Transactions on Signal Processin

    Diffusion Adaptation Strategies for Distributed Estimation over Gaussian Markov Random Fields

    Full text link
    The aim of this paper is to propose diffusion strategies for distributed estimation over adaptive networks, assuming the presence of spatially correlated measurements distributed according to a Gaussian Markov random field (GMRF) model. The proposed methods incorporate prior information about the statistical dependency among observations, while at the same time processing data in real-time and in a fully decentralized manner. A detailed mean-square analysis is carried out in order to prove stability and evaluate the steady-state performance of the proposed strategies. Finally, we also illustrate how the proposed techniques can be easily extended in order to incorporate thresholding operators for sparsity recovery applications. Numerical results show the potential advantages of using such techniques for distributed learning in adaptive networks deployed over GMRF.Comment: Submitted to IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:1206.309

    Adaptive Graph Signal Processing: Algorithms and Optimal Sampling Strategies

    Full text link
    The goal of this paper is to propose novel strategies for adaptive learning of signals defined over graphs, which are observed over a (randomly time-varying) subset of vertices. We recast two classical adaptive algorithms in the graph signal processing framework, namely, the least mean squares (LMS) and the recursive least squares (RLS) adaptive estimation strategies. For both methods, a detailed mean-square analysis illustrates the effect of random sampling on the adaptive reconstruction capability and the steady-state performance. Then, several probabilistic sampling strategies are proposed to design the sampling probability at each node in the graph, with the aim of optimizing the tradeoff between steady-state performance, graph sampling rate, and convergence rate of the adaptive algorithms. Finally, a distributed RLS strategy is derived and is shown to be convergent to its centralized counterpart. Numerical simulations carried out over both synthetic and real data illustrate the good performance of the proposed sampling and reconstruction strategies for (possibly distributed) adaptive learning of signals defined over graphs.Comment: Submitted to IEEE Transactions on Signal Processing, September 201

    Sparse Distributed Learning Based on Diffusion Adaptation

    Full text link
    This article proposes diffusion LMS strategies for distributed estimation over adaptive networks that are able to exploit sparsity in the underlying system model. The approach relies on convex regularization, common in compressive sensing, to enhance the detection of sparsity via a diffusive process over the network. The resulting algorithms endow networks with learning abilities and allow them to learn the sparse structure from the incoming data in real-time, and also to track variations in the sparsity of the model. We provide convergence and mean-square performance analysis of the proposed method and show under what conditions it outperforms the unregularized diffusion version. We also show how to adaptively select the regularization parameter. Simulation results illustrate the advantage of the proposed filters for sparse data recovery.Comment: to appear in IEEE Trans. on Signal Processing, 201
    • …
    corecore