1,900 research outputs found

    Power Droop Reduction In Logic BIST By Scan Chain Reordering

    Get PDF
    Significant peak power (PP), thus power droop (PD), during test is a serious concern for modern, complex ICs. In fact, the PD originated during the application of test vectors may produce a delay effect on the circuit under test signal transitions. This event may be erroneously recognized as presence of a delay fault, with consequent generation of an erroneous test fail, thus increasing yield loss. Several solutions have been proposed in the literature to reduce the PD during test of combinational ICs, while fewer approaches exist for sequential ICs. In this paper, we propose a novel approach to reduce peak power/power droop during test of sequential circuits with scan-based Logic BIST. In particular, our approach reduces the switching activity of the scan chains between following capture cycles. This is achieved by an original generation and arrangement of test vectors. The proposed approach presents a very low impact on fault coverage and test time

    Power Minimisation Techniques for Testing Low Power VLSI Circuits (PhD Dissertation)

    No full text
    Testing low power very large scale integrated (VLSI) circuits has recently become an area of concern due to yield and reliability problems. This dissertation focuses on minimising power dissipation during test application at logic level and register-transfer level (RTL) of abstraction of the VLSI design flow. The first part of this dissertation addresses power minimisation techniques in scan sequential circuits at the logic level of abstraction. A new best primary input change (BPIC) technique based on a novel test application strategy has been proposed. The technique increases the correlation between successive states during shifting in test vectors and shifting out test responses by changing the primary inputs such that the smallest number of transitions is achieved. The new technique is test set dependent and it is applicable to small to medium sized full and partial scan sequential circuits. Since the proposed test application strategy depends only on controlling primary input change time, power is minimised with no penalty in test area, performance, test efficiency, test application time or volume of test data. Furthermore, it is shown that partial scan does not provide only the commonly known benefits such as less test area overhead and test application time, but also less power dissipation during test application when compared to full scan. To achieve power savings in large scan sequential circuits a new test set independent multiple scan chain-based technique which employs a new design for test (DFT) architecture and a novel test application strategy, is presented. The technique has been validated using benchmark examples, and it has been shown that power is minimised with low computational time, low overhead in test area and volume of test data, and with no penalty in test application time, test efficiency, or performance. The second part of this dissertation addresses power minimisation techniques for testing low power VLSI circuits using built-in self-test (BIST) at RTL. First, it is important to overcome the shortcomings associated with traditional BIST methodologies. It is shown how a new BIST methodology for RTL data paths using a novel concept called test compatibility classes (TCC) overcomes high test application time, BIST area overhead, performance degradation, volume of test data, fault-escape probability, and complexity of the testable design space exploration. Second, power minimisation in BIST RTL data paths is achieved by analysing the effect of test synthesis and test scheduling on power dissipation during test application and by employing new power conscious test synthesis and test scheduling algorithms. Third, the new BIST methodology has been validated using benchmark examples. Further, it is shown that when the proposed power conscious test synthesis and test scheduling is combined with novel test compatibility classes simultaneous reduction in test application time and power dissipation is achieved with low overhead in computational time

    Low Power Digital Design using Asynchronous Logic

    Get PDF
    This thesis summarizes research undertaken at San JosΓ© State University between January 2009 and May 2011, which introduces a new method of achieving low power by reducing the dependency of the clock signal in the design. A clock signal consumes power even when the circuit is idle, but asynchronous circuits by default move into the idle state and involve no transition in the circuit during that state. In addition, in an active system, only the subsystem that is in use dissipates power. This work mainly focused on obtaining low power by implementing asynchronous logic. The work also studied the measure of power consumption using asynchronous logic by designing a simple Display Controller. The Display Controller was designed using Verilog HDL and synthesized using Synopsys Design Compiler. The work also studied the trade–offs in power, area, and design complexity in asynchronous design. The power consumed by the synchronous and asynchronous display controllers was measured, and the asynchronous design consumed about 17% less power than its synchronous counterpart. The area of the asynchronous design was twice that of the synchronous one. Power can be reduced by reducing the dependency of the clock signal in the design by choosing asynchronous logic

    Low cost passive radar through software defined radio

    Get PDF
    Passive radars utilise existing terrestrial radio signals, such as those produced by radio or television stations, to track objects within their range. This project aims to determine the suitability of low cost USB TV tuners as hardware receivers for a Software Defined Radio (SDR) based passive radar receiver. Subsequently determining its effectiveness in producing inverse synthetic aperture radar images using data collected from Digital Television signals. Since the initial identification of passive radar, Militaries the world over have been using it as a part of electronic warfare. The evolution of SDR has enabled greater access to the technologies required to implement passive radar, with the greatest limitation being the cost of the required hardware. The availability of low cost hardware was therefore investigated to determine its suitability and subsequently the availability of passive radar to a wider audience. Research was conducted into the available SDR receivers, and comparison of specifications was made against the low cost receiver used in the project. A functional hardware platform based around the Realtek RTL2832U chipset has been developed to determine its suitability as a low cost receiver verifying its ability to coherently receive radio signals for target identification. A complex ambiguity function was implemented to interpret sampled data windows, with the output of these windows to be compared to the requirements for an inverse synthetic aperture radar input, thus determining the suitability of the device. Interpretation of the received data has identified that although the hardware is capable, a real time implementation of data processing is not yet possible, impeding the ability to determine the suitability of the receiver as an inverse synthetic aperture receiver. The results of testing show that the hardware is capable of receiving and producing radar images, however due to the bandwidth of DVB-T signals , and the bandwidth limitations inherent in RTL-SDR dongles, they have proven not to be suitable for DVB-T based inverse synthetic aperture radar receivers

    KAPow: high-accuracy, low-overhead online per-module power estimation for FPGA designs

    Get PDF
    In an FPGA system-on-chip design, it is often insufficient to merely assess the power consumption of the entire circuit by compile-time estimation or runtime power measurement. Instead, to make better decisions, one must understand the power consumed by each module in the system. In this work, we combine measurements of register-level switching activity and system-level power to build an adaptive online model that produces live breakdowns of power consumption within the design. Online model refinement avoids time-consuming characterisation while also allowing the model to track long-term operating condition changes. Central to our method is an automated flow that selects signals predicted to be indicative of high power consumption, instrumenting them for monitoring. We named this technique KAPow, for 'K'ounting Activity for Power estimation, which we show to be accurate and to have low overheads across a range of representative benchmarks. We also propose a strategy allowing for the identification and subsequent elimination of counters found to be of low significance at runtime, reducing algorithmic complexity without sacrificing significant accuracy. Finally, we demonstrate an application example in which a module-level power breakdown can be used to determine an efficient mapping of tasks to modules and reduce system-wide power consumption by up to 7%

    Ensuring a High Quality Digital Device through Design for Testability

    Get PDF
    An electronic device is reliable if it is available for use most of the times throughout its life. The reliability can be affected by mishandling and use under abnormal operating conditions. High quality product cannot be achieved without proper verification and testing during the product development cycle. If the design is difficult to test, then it is very likely that most of the faults will not be detected before it is shipped to the customer. This paper describes how product quality can be improved by making the hardware design testable. Various designs for testability techniqueswere discussed. A three bit counter circuit was used to illustrate the benefits of design for testability by using scan chain methodology
    • …
    corecore