96 research outputs found

    Drawing graphs for cartographic applications

    Get PDF
    Graph Drawing is a relatively young area that combines elements of graph theory, algorithms, (computational) geometry and (computational) topology. Research in this field concentrates on developing algorithms for drawing graphs while satisfying certain aesthetic criteria. These criteria are often expressed in properties like edge complexity, number of edge crossings, angular resolutions, shapes of faces or graph symmetries and in general aim at creating a drawing of a graph that conveys the information to the reader in the best possible way. Graph drawing has applications in a wide variety of areas which include cartography, VLSI design and information visualization. In this thesis we consider several graph drawing problems. The first problem we address is rectilinear cartogram construction. A cartogram, also known as value-by-area map, is a technique used by cartographers to visualize statistical data over a set of geographical regions like countries, states or counties. The regions of a cartogram are deformed such that the area of a region corresponds to a particular geographic variable. The shapes of the regions depend on the type of cartogram. We consider rectilinear cartograms of constant complexity, that is cartograms where each region is a rectilinear polygon with a constant number of vertices. Whether a cartogram is good is determined by how closely the cartogram resembles the original map and how precisely the area of its regions describe the associated values. The cartographic error is defined for each region as jAc¡Asj=As, where Ac is the area of the region in the cartogram and As is the specified area of that region, given by the geographic variable to be shown. In this thesis we consider the construction of rectilinear cartograms that have correct adjacencies of the regions and zero cartographic error. We show that any plane triangulated graph admits a rectilinear cartogram where every region has at most 40 vertices which can be constructed in O(nlogn) time. We also present experimental results that show that in practice the algorithm works significantly better than suggested by the complexity bounds. In our experiments on real-world data we were always able to construct a cartogram where the average number of vertices per region does not exceed five. Since a rectangle has four vertices, this means that most of the regions of our rectilinear car tograms are in fact rectangles. Moreover, the maximum number vertices of each region in these cartograms never exceeded ten. The second problem we address in this thesis concerns cased drawings of graphs. The vertices of a drawing are commonly marked with a disk, but differentiating between vertices and edge crossings in a dense graph can still be difficult. Edge casing is a wellknown method—used, for example, in electrical drawings, when depicting knots, and, more generally, in information visualization—to alleviate this problem and to improve the readability of a drawing. A cased drawing orders the edges of each crossing and interrupts the lower edge in an appropriate neighborhood of the crossing. One can also envision that every edge is encased in a strip of the background color and that the casing of the upper edge covers the lower edge at the crossing. If there are no application-specific restrictions that dictate the order of the edges at each crossing, then we can in principle choose freely how to arrange them. However, certain orders will lead to a more readable drawing than others. In this thesis we formulate aesthetic criteria for a cased drawing as optimization problems and solve these problems. For most of the problems we present either a polynomial time algorithm or demonstrate that the problem is NP-hard. Finally we consider a combinatorial question in computational topology concerning three types of objects: closed curves in the plane, surfaces immersed in the plane, and surfaces embedded in space. In particular, we study casings of closed curves in the plane to decide whether these curves can be embedded as the boundaries of certain special surfaces. We show that it is NP-complete to determine whether an immersed disk is the projection of a surface embedded in space, or whether a curve is the boundary of an immersed surface in the plane that is not constrained to be a disk. However, when a casing is supplied with a self-intersecting curve, describing which component of the curve lies above and which below at each crossing, we can determine in time linear in the number of crossings whether the cased curve forms the projected boundary of a surface in space. As a related result, we show that an immersed surface with a single boundary curve that crosses itself n times has at most 2n=2 combinatorially distinct spatial embeddings and we discuss the existence of fixed-parameter tractable algorithms for related problems

    Edge-weighted contact representations of planar graphs

    Full text link

    Geometric Crossing-Minimization - A Scalable Randomized Approach

    Get PDF
    We consider the minimization of edge-crossings in geometric drawings of graphs G=(V, E), i.e., in drawings where each edge is depicted as a line segment. The respective decision problem is NP-hard [Daniel Bienstock, 1991]. Crossing-minimization, in general, is a popular theoretical research topic; see Vrt\u27o [Imrich Vrt\u27o, 2014]. In contrast to theory and the topological setting, the geometric setting did not receive a lot of attention in practice. Prior work [Marcel Radermacher et al., 2018] is limited to the crossing-minimization in geometric graphs with less than 200 edges. The described heuristics base on the primitive operation of moving a single vertex v to its crossing-minimal position, i.e., the position in R^2 that minimizes the number of crossings on edges incident to v. In this paper, we introduce a technique to speed-up the computation by a factor of 20. This is necessary but not sufficient to cope with graphs with a few thousand edges. In order to handle larger graphs, we drop the condition that each vertex v has to be moved to its crossing-minimal position and compute a position that is only optimal with respect to a small random subset of the edges. In our theoretical contribution, we consider drawings that contain for each edge uv in E and each position p in R^2 for v o(|E|) crossings. In this case, we prove that with a random subset of the edges of size Theta(k log k) the co-crossing number of a degree-k vertex v, i.e., the number of edge pairs uv in E, e in E that do not cross, can be approximated by an arbitrary but fixed factor delta with high probability. In our experimental evaluation, we show that the randomized approach reduces the number of crossings in graphs with up to 13 000 edges considerably. The evaluation suggests that depending on the degree-distribution different strategies result in the fewest number of crossings

    On Semantic Word Cloud Representation

    Full text link
    We study the problem of computing semantic-preserving word clouds in which semantically related words are close to each other. While several heuristic approaches have been described in the literature, we formalize the underlying geometric algorithm problem: Word Rectangle Adjacency Contact (WRAC). In this model each word is associated with rectangle with fixed dimensions, and the goal is to represent semantically related words by ensuring that the two corresponding rectangles touch. We design and analyze efficient polynomial-time algorithms for some variants of the WRAC problem, show that several general variants are NP-hard, and describe a number of approximation algorithms. Finally, we experimentally demonstrate that our theoretically-sound algorithms outperform the early heuristics

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    The Geometric Maximum Traveling Salesman Problem

    Full text link
    We consider the traveling salesman problem when the cities are points in R^d for some fixed d and distances are computed according to geometric distances, determined by some norm. We show that for any polyhedral norm, the problem of finding a tour of maximum length can be solved in polynomial time. If arithmetic operations are assumed to take unit time, our algorithms run in time O(n^{f-2} log n), where f is the number of facets of the polyhedron determining the polyhedral norm. Thus for example we have O(n^2 log n) algorithms for the cases of points in the plane under the Rectilinear and Sup norms. This is in contrast to the fact that finding a minimum length tour in each case is NP-hard. Our approach can be extended to the more general case of quasi-norms with not necessarily symmetric unit ball, where we get a complexity of O(n^{2f-2} log n). For the special case of two-dimensional metrics with f=4 (which includes the Rectilinear and Sup norms), we present a simple algorithm with O(n) running time. The algorithm does not use any indirect addressing, so its running time remains valid even in comparison based models in which sorting requires Omega(n \log n) time. The basic mechanism of the algorithm provides some intuition on why polyhedral norms allow fast algorithms. Complementing the results on simplicity for polyhedral norms, we prove that for the case of Euclidean distances in R^d for d>2, the Maximum TSP is NP-hard. This sheds new light on the well-studied difficulties of Euclidean distances.Comment: 24 pages, 6 figures; revised to appear in Journal of the ACM. (clarified some minor points, fixed typos
    corecore