2,404 research outputs found

    Geometric Interpretation of Theoretical Bounds for RSS-based Source Localization with Uncertain Anchor Positions

    Full text link
    The Received Signal Strength based source localization can encounter severe problems originating from uncertain information about the anchor positions in practice. The anchor positions, although commonly assumed to be precisely known prior to the source localization, are usually obtained using previous estimation algorithm such as GPS. This previous estimation procedure produces anchor positions with limited accuracy that result in degradations of the source localization algorithm and topology uncertainty. We have recently addressed the problem with a joint estimation framework that jointly estimates the unknown source and uncertain anchors positions and derived the theoretical limits of the framework. This paper extends the authors previous work on the theoretical performance bounds of the joint localization framework with appropriate geometric interpretation of the overall problem exploiting the properties of semi-definiteness and symmetry of the Fisher Information Matrix and the Cram{\`e}r-Rao Lower Bound and using Information and Error Ellipses, respectively. The numerical results aim to illustrate and discuss the usefulness of the geometric interpretation. They provide in-depth insight into the geometrical properties of the joint localization problem underlining the various possibilities for practical design of efficient localization algorithms.Comment: 30 pages, 15 figure

    RSS-Based Sensor Localization in the Presence of Unknown Channel Parameters

    Get PDF
    This correspondence studies the received signal strength-based localization problem when the transmit power or path-loss exponent is unknown. The corresponding maximum-likelihood estimator (MLE) poses a difficult nonconvex optimization problem. To avoid the difficulty in solving the MLE, we use suitable approximations and formulate the localization problem as a general trust region subproblem, which can be solved exactly under mild conditions. Simulation results show a promising performance for the proposed methods, which also have reasonable complexities compared to existing approaches

    Performance comparison of RSS algorithms for indoor localization in large open environments

    Get PDF
    We develop and benchmark four RSS localisation algorithms where different a priori knowledge is required. The selection of the best algorithm depends on the availability of additional information on path loss exponent and/or transmit power. We compare our algorithms with centroid localization and show that the algorithms provide better results for shadowing on the values not exceeding 6dB. We perform experiments and simulations with Bluetooth Low Energy and LoRaWAN technologies and select the best technology and algorithm for localisation in large open industrial environments
    corecore