445 research outputs found

    The tropical double description method

    Get PDF
    We develop a tropical analogue of the classical double description method allowing one to compute an internal representation (in terms of vertices) of a polyhedron defined externally (by inequalities). The heart of the tropical algorithm is a characterization of the extreme points of a polyhedron in terms of a system of constraints which define it. We show that checking the extremality of a point reduces to checking whether there is only one minimal strongly connected component in an hypergraph. The latter problem can be solved in almost linear time, which allows us to eliminate quickly redundant generators. We report extensive tests (including benchmarks from an application to static analysis) showing that the method outperforms experimentally the previous ones by orders of magnitude. The present tools also lead to worst case bounds which improve the ones provided by previous methods.Comment: 12 pages, prepared for the Proceedings of the Symposium on Theoretical Aspects of Computer Science, 2010, Nancy, Franc

    Distributed local approximation algorithms for maximum matching in graphs and hypergraphs

    Full text link
    We describe approximation algorithms in Linial's classic LOCAL model of distributed computing to find maximum-weight matchings in a hypergraph of rank rr. Our main result is a deterministic algorithm to generate a matching which is an O(r)O(r)-approximation to the maximum weight matching, running in O~(rlogΔ+log2Δ+logn)\tilde O(r \log \Delta + \log^2 \Delta + \log^* n) rounds. (Here, the O~()\tilde O() notations hides polyloglog Δ\text{polyloglog } \Delta and polylog r\text{polylog } r factors). This is based on a number of new derandomization techniques extending methods of Ghaffari, Harris & Kuhn (2017). As a main application, we obtain nearly-optimal algorithms for the long-studied problem of maximum-weight graph matching. Specifically, we get a (1+ϵ)(1+\epsilon) approximation algorithm using O~(logΔ/ϵ3+polylog(1/ϵ,loglogn))\tilde O(\log \Delta / \epsilon^3 + \text{polylog}(1/\epsilon, \log \log n)) randomized time and O~(log2Δ/ϵ4+logn/ϵ)\tilde O(\log^2 \Delta / \epsilon^4 + \log^*n / \epsilon) deterministic time. The second application is a faster algorithm for hypergraph maximal matching, a versatile subroutine introduced in Ghaffari et al. (2017) for a variety of local graph algorithms. This gives an algorithm for (2Δ1)(2 \Delta - 1)-edge-list coloring in O~(log2Δlogn)\tilde O(\log^2 \Delta \log n) rounds deterministically or O~((loglogn)3)\tilde O( (\log \log n)^3 ) rounds randomly. Another consequence (with additional optimizations) is an algorithm which generates an edge-orientation with out-degree at most (1+ϵ)λ\lceil (1+\epsilon) \lambda \rceil for a graph of arboricity λ\lambda; for fixed ϵ\epsilon this runs in O~(log6n)\tilde O(\log^6 n) rounds deterministically or O~(log3n)\tilde O(\log^3 n ) rounds randomly
    corecore