4,846 research outputs found

    Multi-robot Automated Search for Non-Adversarial Moving Evaders in an Unknown Environment

    Get PDF
    In this paper, the problem of searching for moving evaders in unknown environment using group of mobile robots is investigated. The aim is to find the moving evaders as fast as possible. Three different search techniques are proposed and evaluated through extensive experimentation. In the first two techniques, robots do not cooperate or coordinate their actions. Alternatively, they implement simple movement strategies to locate the evaders. On the contrary, in the third technique, robots employ explicit coordination among each other and they implement a relatively complex algorithm based on voronio graph to find the evaders. In the later technique, each robot needs to be equipped with communication and localization capabilities. The results showed that graph-based technique led to shortest search time. However, it also showed that a reasonable performance is possible with cheap robots implementing simple and non-coordination techniques. Keywords: Search, Multi-Robot, Voronio Graph, Moving Target, Coordination

    Decentralized Autonomous Navigation Strategies for Multi-Robot Search and Rescue

    Full text link
    In this report, we try to improve the performance of existing approaches for search operations in multi-robot context. We propose three novel algorithms that are using a triangular grid pattern, i.e., robots certainly go through the vertices of a triangular grid during the search procedure. The main advantage of using a triangular grid pattern is that it is asymptotically optimal in terms of the minimum number of robots required for the complete coverage of an arbitrary bounded area. We use a new topological map which is made and shared by robots during the search operation. We consider an area that is unknown to the robots a priori with an arbitrary shape, containing some obstacles. Unlike many current heuristic algorithms, we give mathematically proofs of convergence of the algorithms. The computer simulation results for the proposed algorithms are presented using a simulator of real robots and environment. We evaluate the performance of the algorithms via experiments with real robots. We compare the performance of our own algorithms with three existing algorithms from other researchers. The results demonstrate the merits of our proposed solution. A further study on formation building with obstacle avoidance for a team of mobile robots is presented in this report. We propose a decentralized formation building with obstacle avoidance algorithm for a group of mobile robots to move in a defined geometric configuration. Furthermore, we consider a more complicated formation problem with a group of anonymous robots; these robots are not aware of their position in the final configuration and need to reach a consensus during the formation process. We propose a randomized algorithm for the anonymous robots that achieves the convergence to a desired configuration with probability 1. We also propose a novel obstacle avoidance rule, used in the formation building algorithm.Comment: arXiv admin note: substantial text overlap with arXiv:1402.5188 by other author

    Parallelizing RRT on distributed-memory architectures

    Get PDF
    This paper addresses the problem of improving the performance of the Rapidly-exploring Random Tree (RRT) algorithm by parallelizing it. For scalability reasons we do so on a distributed-memory architecture, using the message-passing paradigm. We present three parallel versions of RRT along with the technicalities involved in their implementation. We also evaluate the algorithms and study how they behave on different motion planning problems

    Learning for Multi-robot Cooperation in Partially Observable Stochastic Environments with Macro-actions

    Get PDF
    This paper presents a data-driven approach for multi-robot coordination in partially-observable domains based on Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) and macro-actions (MAs). Dec-POMDPs provide a general framework for cooperative sequential decision making under uncertainty and MAs allow temporally extended and asynchronous action execution. To date, most methods assume the underlying Dec-POMDP model is known a priori or a full simulator is available during planning time. Previous methods which aim to address these issues suffer from local optimality and sensitivity to initial conditions. Additionally, few hardware demonstrations involving a large team of heterogeneous robots and with long planning horizons exist. This work addresses these gaps by proposing an iterative sampling based Expectation-Maximization algorithm (iSEM) to learn polices using only trajectory data containing observations, MAs, and rewards. Our experiments show the algorithm is able to achieve better solution quality than the state-of-the-art learning-based methods. We implement two variants of multi-robot Search and Rescue (SAR) domains (with and without obstacles) on hardware to demonstrate the learned policies can effectively control a team of distributed robots to cooperate in a partially observable stochastic environment.Comment: Accepted to the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017
    corecore