14,008 research outputs found

    What is Ramsey-equivalent to a clique?

    Full text link
    A graph G is Ramsey for H if every two-colouring of the edges of G contains a monochromatic copy of H. Two graphs H and H' are Ramsey-equivalent if every graph G is Ramsey for H if and only if it is Ramsey for H'. In this paper, we study the problem of determining which graphs are Ramsey-equivalent to the complete graph K_k. A famous theorem of Nesetril and Rodl implies that any graph H which is Ramsey-equivalent to K_k must contain K_k. We prove that the only connected graph which is Ramsey-equivalent to K_k is itself. This gives a negative answer to the question of Szabo, Zumstein, and Zurcher on whether K_k is Ramsey-equivalent to K_k.K_2, the graph on k+1 vertices consisting of K_k with a pendent edge. In fact, we prove a stronger result. A graph G is Ramsey minimal for a graph H if it is Ramsey for H but no proper subgraph of G is Ramsey for H. Let s(H) be the smallest minimum degree over all Ramsey minimal graphs for H. The study of s(H) was introduced by Burr, Erdos, and Lovasz, where they show that s(K_k)=(k-1)^2. We prove that s(K_k.K_2)=k-1, and hence K_k and K_k.K_2 are not Ramsey-equivalent. We also address the question of which non-connected graphs are Ramsey-equivalent to K_k. Let f(k,t) be the maximum f such that the graph H=K_k+fK_t, consisting of K_k and f disjoint copies of K_t, is Ramsey-equivalent to K_k. Szabo, Zumstein, and Zurcher gave a lower bound on f(k,t). We prove an upper bound on f(k,t) which is roughly within a factor 2 of the lower bound

    Minimum Degrees of Minimal Ramsey Graphs for Almost-Cliques

    Full text link
    For graphs FF and HH, we say FF is Ramsey for HH if every 22-coloring of the edges of FF contains a monochromatic copy of HH. The graph FF is Ramsey HH-minimal if FF is Ramsey for HH and there is no proper subgraph FF' of FF so that FF' is Ramsey for HH. Burr, Erdos, and Lovasz defined s(H)s(H) to be the minimum degree of FF over all Ramsey HH-minimal graphs FF. Define Ht,dH_{t,d} to be a graph on t+1t+1 vertices consisting of a complete graph on tt vertices and one additional vertex of degree dd. We show that s(Ht,d)=d2s(H_{t,d})=d^2 for all values 1<dt1<d\le t; it was previously known that s(Ht,1)=t1s(H_{t,1})=t-1, so it is surprising that s(Ht,2)=4s(H_{t,2})=4 is much smaller. We also make some further progress on some sparser graphs. Fox and Lin observed that s(H)2δ(H)1s(H)\ge 2\delta(H)-1 for all graphs HH, where δ(H)\delta(H) is the minimum degree of HH; Szabo, Zumstein, and Zurcher investigated which graphs have this property and conjectured that all bipartite graphs HH without isolated vertices satisfy s(H)=2δ(H)1s(H)=2\delta(H)-1. Fox, Grinshpun, Liebenau, Person, and Szabo further conjectured that all triangle-free graphs without isolated vertices satisfy this property. We show that dd-regular 33-connected triangle-free graphs HH, with one extra technical constraint, satisfy s(H)=2δ(H)1s(H) = 2\delta(H)-1; the extra constraint is that HH has a vertex vv so that if one removes vv and its neighborhood from HH, the remainder is connected.Comment: 10 pages; 3 figure

    BEBERAPA KELAS GRAF RAMSEY MINIMAL UNTUK LINTASAN P_3 VERSUS P_5

    Get PDF
    In 1930, Frank Plumpton Ramsey has introduced Ramsey's theory, in his paper titled On a Problem of Formal Logic. This study became morepopular since Erdős and Szekeres applied Ramsey's theory to graph theory. Suppose given the graph F, G and H. The notation F → (G, H)  states thatfor any red-blue coloring of the edges of F implies F containing a red subgraph of G or a blue subgraph of H. The graph F is said to be the Ramsey graph for graph G versus H (pair G and H) if F → (G, H). Graph F is called Ramsey minimal graph for G versus H if  first, F → (G, H) and second, F satisfies the minimality property i.e. for each e ∈ E (F), then F-e ↛ (G, H). The class of all Ramsey (G, H) minimal graphs is denoted by (G, H). The class (G, H) is called Ramsey infinite or finite if  (G, H) is infinite or finite, respectively. The study about Ramsey minimal graph is still continuously being developed and examined, although in general it is not easy to characterize or determine the graphs included in the (G, H), especially if  (G, H) is an infinite Ramsey class. The characterization of graphs in (, ) has been obtained. However, the characterization of graphs in (, ), for every 3 ≤ m < n is still open. In this article, we will determine some infinite classes of Ramsey minimal graphs  for paths  versus .

    On the minimum degree of minimal Ramsey graphs for multiple colours

    Full text link
    A graph G is r-Ramsey for a graph H, denoted by G\rightarrow (H)_r, if every r-colouring of the edges of G contains a monochromatic copy of H. The graph G is called r-Ramsey-minimal for H if it is r-Ramsey for H but no proper subgraph of G possesses this property. Let s_r(H) denote the smallest minimum degree of G over all graphs G that are r-Ramsey-minimal for H. The study of the parameter s_2 was initiated by Burr, Erd\H{o}s, and Lov\'{a}sz in 1976 when they showed that for the clique s_2(K_k)=(k-1)^2. In this paper, we study the dependency of s_r(K_k) on r and show that, under the condition that k is constant, s_r(K_k) = r^2 polylog r. We also give an upper bound on s_r(K_k) which is polynomial in both r and k, and we determine s_r(K_3) up to a factor of log r

    Ramsey expansions of metrically homogeneous graphs

    Full text link
    We discuss the Ramsey property, the existence of a stationary independence relation and the coherent extension property for partial isometries (coherent EPPA) for all classes of metrically homogeneous graphs from Cherlin's catalogue, which is conjectured to include all such structures. We show that, with the exception of tree-like graphs, all metric spaces in the catalogue have precompact Ramsey expansions (or lifts) with the expansion property. With two exceptions we can also characterise the existence of a stationary independence relation and the coherent EPPA. Our results can be seen as a new contribution to Ne\v{s}et\v{r}il's classification programme of Ramsey classes and as empirical evidence of the recent convergence in techniques employed to establish the Ramsey property, the expansion (or lift or ordering) property, EPPA and the existence of a stationary independence relation. At the heart of our proof is a canonical way of completing edge-labelled graphs to metric spaces in Cherlin's classes. The existence of such a "completion algorithm" then allows us to apply several strong results in the areas that imply EPPA and respectively the Ramsey property. The main results have numerous corollaries on the automorphism groups of the Fra\"iss\'e limits of the classes, such as amenability, unique ergodicity, existence of universal minimal flows, ample generics, small index property, 21-Bergman property and Serre's property (FA).Comment: 57 pages, 14 figures. Extends results of arXiv:1706.00295. Minor revisio
    corecore