1,422 research outputs found

    The Ramsey number of dense graphs

    Get PDF
    The Ramsey number r(H) of a graph H is the smallest number n such that, in any two-colouring of the edges of K_n, there is a monochromatic copy of H. We study the Ramsey number of graphs H with t vertices and density \r, proving that r(H) \leq 2^{c \sqrt{\r} \log (2/\r) t}. We also investigate some related problems, such as the Ramsey number of graphs with t vertices and maximum degree \r t and the Ramsey number of random graphs in \mathcal{G}(t, \r), that is, graphs on t vertices where each edge has been chosen independently with probability \r.Comment: 15 page

    Ramsey Goodness and Beyond

    Full text link
    In a seminal paper from 1983, Burr and Erdos started the systematic study of Ramsey numbers of cliques vs. large sparse graphs, raising a number of problems. In this paper we develop a new approach to such Ramsey problems using a mix of the Szemeredi regularity lemma, embedding of sparse graphs, Turan type stability, and other structural results. We give exact Ramsey numbers for various classes of graphs, solving all but one of the Burr-Erdos problems.Comment: A new reference is adde

    On path-quasar Ramsey numbers

    Get PDF
    Let G1G_1 and G2G_2 be two given graphs. The Ramsey number R(G1,G2)R(G_1,G_2) is the least integer rr such that for every graph GG on rr vertices, either GG contains a G1G_1 or G‾\overline{G} contains a G2G_2. Parsons gave a recursive formula to determine the values of R(Pn,K1,m)R(P_n,K_{1,m}), where PnP_n is a path on nn vertices and K1,mK_{1,m} is a star on m+1m+1 vertices. In this note, we first give an explicit formula for the path-star Ramsey numbers. Secondly, we study the Ramsey numbers R(Pn,K1∨Fm)R(P_n,K_1\vee F_m), where FmF_m is a linear forest on mm vertices. We determine the exact values of R(Pn,K1∨Fm)R(P_n,K_1\vee F_m) for the cases m≤nm\leq n and m≥2nm\geq 2n, and for the case that FmF_m has no odd component. Moreover, we give a lower bound and an upper bound for the case n+1≤m≤2n−1n+1\leq m\leq 2n-1 and FmF_m has at least one odd component.Comment: 7 page
    • …
    corecore