2,783 research outputs found

    Hardness and Algorithms for Rainbow Connectivity

    Get PDF
    An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In addition to being a natural combinatorial problem, the rainbow connectivity problem is motivated by applications in cellular networks. In this paper we give the first proof that computing rc(G) is NP-Hard. In fact, we prove that it is already NP-Complete to decide if rc(G) = 2, and also that it is NP-Complete to decide whether a given edge-colored (with an unbounded number of colors) graph is rainbow connected. On the positive side, we prove that for every ϵ\epsilon > 0, a connected graph with minimum degree at least ϵn\epsilon n has bounded rainbow connectivity, where the bound depends only on ϵ\epsilon, and the corresponding coloring can be constructed in polynomial time. Additional non-trivial upper bounds, as well as open problems and conjectures are also pre sented

    Rainbow kk-connectivity of random bipartite graphs

    Full text link
    A path in an edge-colored graph GG is called a rainbow path if no two edges of the path are colored the same. The minimum number of colors required to color the edges of GG such that every pair of vertices are connected by at least kk internally vertex-disjoint rainbow paths is called the rainbow kk-connectivity of the graph GG, denoted by rck(G)rc_k(G). For the random graph G(n,p)G(n,p), He and Liang got a sharp threshold function for the property rck(G(n,p))drc_k(G(n,p))\leq d. In this paper, we extend this result to the case of random bipartite graph G(m,n,p)G(m,n,p).Comment: 15 pages. arXiv admin note: text overlap with arXiv:1012.1942 by other author

    The (k,)(k,\ell)-rainbow index of random graphs

    Full text link
    A tree in an edge colored graph is said to be a rainbow tree if no two edges on the tree share the same color. Given two positive integers kk, \ell with k3k\geq 3, the \emph{(k,)(k,\ell)-rainbow index} rxk,(G)rx_{k,\ell}(G) of GG is the minimum number of colors needed in an edge-coloring of GG such that for any set SS of kk vertices of GG, there exist \ell internally disjoint rainbow trees connecting SS. This concept was introduced by Chartrand et. al., and there have been very few related results about it. In this paper, We establish a sharp threshold function for rxk,(Gn,p)krx_{k,\ell}(G_{n,p})\leq k and rxk,(Gn,M)k,rx_{k,\ell}(G_{n,M})\leq k, respectively, where Gn,pG_{n,p} and Gn,MG_{n,M} are the usually defined random graphs.Comment: 7 pages. arXiv admin note: substantial text overlap with arXiv:1212.6845, arXiv:1310.278

    Rainbow Connection of Random Regular Graphs

    Full text link
    An edge colored graph GG is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection of a connected graph GG, denoted by rc(G)rc(G), is the smallest number of colors that are needed in order to make GG rainbow connected. In this work we study the rainbow connection of the random rr-regular graph G=G(n,r)G=G(n,r) of order nn, where r4r\ge 4 is a constant. We prove that with probability tending to one as nn goes to infinity the rainbow connection of GG satisfies rc(G)=O(logn)rc(G)=O(\log n), which is best possible up to a hidden constant
    corecore