84,119 research outputs found

    On strong rainbow connection number

    Full text link
    A path in an edge-colored graph, where adjacent edges may be colored the same, is a rainbow path if no two edges of it are colored the same. For any two vertices uu and vv of GG, a rainbow u−vu-v geodesic in GG is a rainbow u−vu-v path of length d(u,v)d(u,v), where d(u,v)d(u,v) is the distance between uu and vv. The graph GG is strongly rainbow connected if there exists a rainbow u−vu-v geodesic for any two vertices uu and vv in GG. The strong rainbow connection number of GG, denoted src(G)src(G), is the minimum number of colors that are needed in order to make GG strong rainbow connected. In this paper, we first investigate the graphs with large strong rainbow connection numbers. Chartrand et al. obtained that GG is a tree if and only if src(G)=msrc(G)=m, we will show that src(G)≠m−1src(G)\neq m-1, so GG is not a tree if and only if src(G)≤m−2src(G)\leq m-2, where mm is the number of edge of GG. Furthermore, we characterize the graphs GG with src(G)=m−2src(G)=m-2. We next give a sharp upper bound for src(G)src(G) according to the number of edge-disjoint triangles in graph GG, and give a necessary and sufficient condition for the equality.Comment: 16 page

    On Rainbow Connection Number and Connectivity

    Full text link
    Rainbow connection number, rc(G)rc(G), of a connected graph GG is the minimum number of colours needed to colour its edges, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we investigate the relationship of rainbow connection number with vertex and edge connectivity. It is already known that for a connected graph with minimum degree δ\delta, the rainbow connection number is upper bounded by 3n/(δ+1)+33n/(\delta + 1) + 3 [Chandran et al., 2010]. This directly gives an upper bound of 3n/(λ+1)+33n/(\lambda + 1) + 3 and 3n/(κ+1)+33n/(\kappa + 1) + 3 for rainbow connection number where λ\lambda and κ\kappa, respectively, denote the edge and vertex connectivity of the graph. We show that the above bound in terms of edge connectivity is tight up-to additive constants and show that the bound in terms of vertex connectivity can be improved to (2+ϵ)n/κ+23/ϵ2(2 + \epsilon)n/\kappa + 23/ \epsilon^2, for any ϵ>0\epsilon > 0. We conjecture that rainbow connection number is upper bounded by n/κ+O(1)n/\kappa + O(1) and show that it is true for κ=2\kappa = 2. We also show that the conjecture is true for chordal graphs and graphs of girth at least 7.Comment: 10 page
    • …
    corecore