137,090 research outputs found

    Quadratic maps between modules

    Get PDF
    We introduce a notion of RR-quadratic maps between modules over a commutative ring RR which generalizes several classical notions arising in linear algebra and group theory. On a given module MM such maps are represented by RR-linear maps on a certain module PR2(M)P^2_R(M). The structure of this module is described in term of the symmetric tensor square SymR2(M)Sym^2_R(M), the degree 2 component ΓR2(M)\Gamma^2_R(M) of the divided power algebra over MM, and the ideal I2I_2 of RR generated by the elements r2rr^2-r, rRr\in R. The latter is shown to represent quadratic derivations on RR which arise in the theory of modules over square rings. This allows to extend the classical notion of nilpotent RR-group of class 2 with coefficients in a 2-binomial ring RR to any ring RR. We provide a functorial presentation of I2I_2 and several exact sequences embedding the modules PR2(M)P^2_R(M) and ΓR2(M)\Gamma^2_R(M).Comment: 22 page

    Dobinski-type relations and the Log-normal distribution

    Full text link
    We consider sequences of generalized Bell numbers B(n), n=0,1,... for which there exist Dobinski-type summation formulas; that is, where B(n) is represented as an infinite sum over k of terms P(k)^n/D(k). These include the standard Bell numbers and their generalizations appearing in the normal ordering of powers of boson monomials, as well as variants of the "ordered" Bell numbers. For any such B we demonstrate that every positive integral power of B(m(n)), where m(n) is a quadratic function of n with positive integral coefficients, is the n-th moment of a positive function on the positive real axis, given by a weighted infinite sum of log-normal distributions.Comment: 7 pages, 2 Figure

    Local rigidity of infinite-dimensional Teichmüller spaces

    Get PDF
    This paper presents a rigidity theorem for infinite-dimensional Bergman spaces of hyperbolic Riemann surfaces, which states that the Bergman space A1(M)A^{1}(M), for such a Riemann surface MM, is isomorphic to the Banach space of summable sequence, l1l^{1}. This implies that whenever MM and NN are Riemann surfaces that are not analytically finite, and in particular are not necessarily homeomorphic, then A1(M)A^{1}(M) is isomorphic to A1(N)A^{1}(N). It is known from V. Markovic that if there is a linear isometry between A1(M)A^{1}(M) and A1(N)A^{1}(N), for two Riemann surfaces MM and NN of non-exceptional type, then this isometry is induced by a conformal mapping between MM and NN. As a corollary to this rigidity theorem presented here, taking the Banach duals of A1(M)A^{1}(M) and l1l^{1} shows that the space of holomorphic quadratic differentials on M, Q(M)M,\ Q(M), is isomorphic to the Banach space of bounded sequences, ll^{\infty }. As a consequence of this theorem and the Bers embedding, the Teichmüller spaces of such Riemann surfaces are locally bi-Lipschitz equivalent

    Fixed-rank Rayleigh Quotient Maximization by an MMPSK Sequence

    Full text link
    Certain optimization problems in communication systems, such as limited-feedback constant-envelope beamforming or noncoherent MM-ary phase-shift keying (MMPSK) sequence detection, result in the maximization of a fixed-rank positive semidefinite quadratic form over the MMPSK alphabet. This form is a special case of the Rayleigh quotient of a matrix and, in general, its maximization by an MMPSK sequence is NP\mathcal{NP}-hard. However, if the rank of the matrix is not a function of its size, then the optimal solution can be computed with polynomial complexity in the matrix size. In this work, we develop a new technique to efficiently solve this problem by utilizing auxiliary continuous-valued angles and partitioning the resulting continuous space of solutions into a polynomial-size set of regions, each of which corresponds to a distinct MMPSK sequence. The sequence that maximizes the Rayleigh quotient is shown to belong to this polynomial-size set of sequences, thus efficiently reducing the size of the feasible set from exponential to polynomial. Based on this analysis, we also develop an algorithm that constructs this set in polynomial time and show that it is fully parallelizable, memory efficient, and rank scalable. The proposed algorithm compares favorably with other solvers for this problem that have appeared recently in the literature.Comment: 15 pages, 12 figures, To appear in IEEE Transactions on Communication

    Construction of pp-ary Sequence Families of Period (pn1)/2(p^n-1)/2 and Cross-Correlation of pp-ary m-Sequences and Their Decimated Sequences

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2015. 2. 노종선.This dissertation includes three main contributions: a construction of a new family of pp-ary sequences of period pn12\frac{p^n-1}{2} with low correlation, a derivation of the cross-correlation values of decimated pp-ary m-sequences and their decimations, and an upper bound on the cross-correlation values of ternary m-sequences and their decimations. First, for an odd prime p=3mod4p = 3 \mod 4 and an odd integer nn, a new family of pp-ary sequences of period N=pn12N = \frac{p^n-1}{2} with low correlation is proposed. The family is constructed by shifts and additions of two decimated m-sequences with the decimation factors 2 and d=Npn1d = N-p^{n-1}. The upper bound on the maximum value of the magnitude of the correlation of the family is shown to be 2N+1/2=2pn2\sqrt{N+1/2} = \sqrt{2p^n} by using the generalized Kloosterman sums. The family size is four times the period of sequences, 2(pn1)2(p^n-1). Second, based on the work by Helleseth \cite{Helleseth1}, the cross-correlation values between two decimated m-sequences by 2 and 4pn/224p^{n/2}-2 are derived, where pp is an odd prime and n=2mn = 2m is an integer. The cross-correlation is at most 4-valued and their values are {1±pn/22,1+3pn/22,1+5pn/22}\{\frac{-1\pm p^{n/2}}{2}, \frac{-1+3p^{n/2}}{2}, \frac{-1+5p^{n/2}}{2}\}. As a result, for pm2mod3p^m \neq 2 \mod 3, a new sequence family with the maximum correlation value 52N\frac{5}{\sqrt{2}} \sqrt{N} and the family size 4N4N is obtained, where N=pn12N = \frac{p^n-1}{2} is the period of sequences in the family. Lastly, the upper bound on the cross-correlation values of ternary m-sequences and their decimations by d=34k+232k+1+24+32k+1d = \frac{3^{4k+2}-3^{2k+1}+2}{4}+3^{2k+1} is investigated, where kk is an integer and the period of m-sequences is N=34k+21N = 3^{4k+2}-1. The magnitude of the cross-correlation is upper bounded by 1232k+3+1=4.5N+1+1\frac{1}{2} \cdot 3^{2k+3}+1 = 4.5 \sqrt{N+1}+1. To show this, the quadratic form technique and Bluher's results \cite{Bluher} are employed. While many previous results using quadratic form technique consider two quadratic forms, four quadratic forms are involved in this case. It is proved that quadratic forms have only even ranks and at most one of four quadratic forms has the lowest rank 4k24k-2.Abstract i Contents iii List of Tables vi List of Figures vii 1. Introduction 1 1.1. Background 1 1.2. Overview of Dissertation 9 2. Sequences with Low Correlation 11 2.1. Trace Functions and Sequences 11 2.2. Sequences with Low Autocorrelation 13 2.3. Sequence Families with Low Correlation 17 3. A New Family of p-ary Sequences of Period (p^n−1)/2 with Low Correlation 21 3.1. Introduction 22 3.2. Characters 24 3.3. Gaussian Sums and Kloosterman Sums 26 3.4. Notations 28 3.5. Definition of Sequence Family 29 3.6. Correlation Bound 30 3.7. Size of Sequence Family 35 3.8. An Example 38 3.9. Related Work 40 3.10. Conclusion 41 4. On the Cross-Correlation between Two Decimated p-ary m-Sequences by 2 and 4p^{n/2}−2 44 4.1. Introduction 44 4.2. Decimated Sequences of Period (p^n−1)/2 49 4.3. Correlation Bound 53 4.4. Examples 59 4.5. A New Sequence Family of Period (p^n−1)/2 60 4.6. Discussions 61 4.7. Conclusion 67 5. On the Cross-Correlation of Ternary m-Sequences of Period 3^{4k+2} − 1 with Decimation (3^{4k+2}−3^{2k+1}+2)/4 + 3^{2k+1} 69 5.1. Introduction 69 5.2. Quadratic Forms and Linearized Polynomials 71 5.3. Number of Solutions of x^{p^s+1} − cx + c 78 5.4. Notations 79 5.5. Quadratic Form Expression of the Cross-Correlation Function 80 5.6. Ranks of Quadratic Forms 83 5.7. Upper Bound on the Cross-Correlation Function 89 5.8. Examples 93 5.9. Related Works 94 5.10. Conclusion 94 6. Conclusions 96 Bibliography 98 초록 109Docto

    On the spectrum of the Thue-Morse quasicrystal and the rarefaction phenomenon

    Get PDF
    The spectrum of a weighted Dirac comb on the Thue-Morse quasicrystal is investigated, and characterized up to a measure zero set, by means of the Bombieri-Taylor conjecture, for Bragg peaks, and of another conjecture that we call Aubry-Godr\`eche-Luck conjecture, for the singular continuous component. The decomposition of the Fourier transform of the weighted Dirac comb is obtained in terms of tempered distributions. We show that the asymptotic arithmetics of the pp-rarefied sums of the Thue-Morse sequence (Dumont; Goldstein, Kelly and Speer; Grabner; Drmota and Skalba,...), namely the fractality of sum-of-digits functions, play a fundamental role in the description of the singular continous part of the spectrum, combined with some classical results on Riesz products of Peyri\`ere and M. Queff\'elec. The dominant scaling of the sequences of approximant measures on a part of the singular component is controlled by certain inequalities in which are involved the class number and the regulator of real quadratic fields.Comment: 35 pages In honor of the 60-th birthday of Henri Cohe
    corecore