10,885 research outputs found

    Hybrid Spectrum Allocation Scheme in Wireless Cellular Networks

    Get PDF
    Mobile services have seen a major upswing driven by the bandwidth hungry applications thus leading to higher data rate requirements on the wireless networks. Spectrum being the most precious resource in the wireless industry is of keen interest. Various spectrum assignment and frequency reuse schemes have been proposed in literature. However in future networks, dynamic schemes that adapt to spatio-temporal variation in the environment are desired. We thus present a hybrid spectrum assignment scheme which adapts its allocation strategies depending on user distribution in the system. Results show that the proposed dynamic spectrum assignment strategy improves spectrum utilization thereby providing a higher data rate for the users

    Multicast Multigroup Precoding and User Scheduling for Frame-Based Satellite Communications

    Get PDF
    The present work focuses on the forward link of a broadband multibeam satellite system that aggressively reuses the user link frequency resources. Two fundamental practical challenges, namely the need to frame multiple users per transmission and the per-antenna transmit power limitations, are addressed. To this end, the so-called frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints. In this context, a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed. Added to that, the formulation is further extended to include availability constraints. As a result, the high gains of the sum rate optimal design are traded off to satisfy the stringent availability requirements of satellite systems. Moreover, the throughput maximization with a granular spectral efficiency versus SINR function, is formulated and solved. Finally, a multicast-aware user scheduling policy, based on the channel state information, is developed. Thus, substantial multiuser diversity gains are gleaned. Numerical results over a realistic simulation environment exhibit as much as 30% gains over conventional systems, even for 7 users per frame, without modifying the framing structure of legacy communication standards.Comment: Accepted for publication to the IEEE Transactions on Wireless Communications, 201

    Middleware for Wireless Sensor Networks: An Outlook

    Get PDF
    In modern distributed computing, applications are rarely built directly atop operating system facilities, e.g., sockets. Higher-level middleware abstractions and systems are often employed to simplify the programmer’s chore or to achieve interoperability. In contrast, real-world wireless sensor network (WSN) applications are almost always developed by relying directly on the operating system. Why is this the case? Does it make sense to include a middleware layer in the design of WSNs? And, if so, is it the same kind of software system as in traditional distributed computing? What are the fundamental concepts, reasonable assumptions, and key criteria guiding its design? What are the main open research challenges, and the potential pitfalls? Most importantly, is it worth pursuing research in this field? This paper provides a (biased) answer to these and other research questions, preceded by a brief account on the state of the art in the field
    • …
    corecore