5,172 research outputs found

    On the Accuracy of Interference Models in Wireless Communications

    Full text link
    We develop a new framework for measuring and comparing the accuracy of any wireless interference models used in the analysis and design of wireless networks. Our approach is based on a new index that assesses the ability of the interference model to correctly predict harmful interference events, i.e., link outages. We use this new index to quantify the accuracy of various interference models used in the literature, under various scenarios such as Rayleigh fading wireless channels, directional antennas, and blockage (impenetrable obstacles) in the network. Our analysis reveals that in highly directional antenna settings with obstructions, even simple interference models (e.g., the classical protocol model) are accurate, while with omnidirectional antennas, more sophisticated and complex interference models (e.g., the classical physical model) are necessary. Our new approach makes it possible to adopt the appropriate interference model of adequate accuracy and simplicity in different settings.Comment: 7 pages, 3 figures, accepted in IEEE ICC 201

    High-SIR Transmission Capacity of Wireless Networks with General Fading and Node Distribution

    Full text link
    In many wireless systems, interference is the main performance-limiting factor, and is primarily dictated by the locations of concurrent transmitters. In many earlier works, the locations of the transmitters is often modeled as a Poisson point process for analytical tractability. While analytically convenient, the PPP only accurately models networks whose nodes are placed independently and use ALOHA as the channel access protocol, which preserves the independence. Correlations between transmitter locations in non-Poisson networks, which model intelligent access protocols, makes the outage analysis extremely difficult. In this paper, we take an alternative approach and focus on an asymptotic regime where the density of interferers η\eta goes to 0. We prove for general node distributions and fading statistics that the success probability \p \sim 1-\gamma \eta^{\kappa} for η0\eta \rightarrow 0, and provide values of γ\gamma and κ\kappa for a number of important special cases. We show that κ\kappa is lower bounded by 1 and upper bounded by a value that depends on the path loss exponent and the fading. This new analytical framework is then used to characterize the transmission capacity of a very general class of networks, defined as the maximum spatial density of active links given an outage constraint.Comment: Submitted to IEEE Trans. Info Theory special issu

    A universal approach to coverage probability and throughput analysis for cellular networks

    No full text
    This paper proposes a novel tractable approach for accurately analyzing both the coverage probability and the achievable throughput of cellular networks. Specifically, we derive a new procedure referred to as the equivalent uniformdensity plane-entity (EUDPE)method for evaluating the other-cell interference. Furthermore, we demonstrate that our EUDPE method provides a universal and effective means to carry out the lower bound analysis of both the coverage probability and the average throughput for various base-station distribution models that can be found in practice, including the stochastic Poisson point process (PPP) model, a uniformly and randomly distributed model, and a deterministic grid-based model. The lower bounds of coverage probability and average throughput calculated by our proposed method agree with the simulated coverage probability and average throughput results and those obtained by the existing PPP-based analysis, if not better. Moreover, based on our new definition of cell edge boundary, we show that the cellular topology with randomly distributed base stations (BSs) only tends toward the Voronoi tessellation when the path-loss exponent is sufficiently high, which reveals the limitation of this popular network topology

    On Modeling Heterogeneous Wireless Networks Using Non-Poisson Point Processes

    Full text link
    Future wireless networks are required to support 1000 times higher data rate, than the current LTE standard. In order to meet the ever increasing demand, it is inevitable that, future wireless networks will have to develop seamless interconnection between multiple technologies. A manifestation of this idea is the collaboration among different types of network tiers such as macro and small cells, leading to the so-called heterogeneous networks (HetNets). Researchers have used stochastic geometry to analyze such networks and understand their real potential. Unsurprisingly, it has been revealed that interference has a detrimental effect on performance, especially if not modeled properly. Interference can be correlated in space and/or time, which has been overlooked in the past. For instance, it is normally assumed that the nodes are located completely independent of each other and follow a homogeneous Poisson point process (PPP), which is not necessarily true in real networks since the node locations are spatially dependent. In addition, the interference correlation created by correlated stochastic processes has mostly been ignored. To this end, we take a different approach in modeling the interference where we use non-PPP, as well as we study the impact of spatial and temporal correlation on the performance of HetNets. To illustrate the impact of correlation on performance, we consider three case studies from real-life scenarios. Specifically, we use massive multiple-input multiple-output (MIMO) to understand the impact of spatial correlation; we use the random medium access protocol to examine the temporal correlation; and we use cooperative relay networks to illustrate the spatial-temporal correlation. We present several numerical examples through which we demonstrate the impact of various correlation types on the performance of HetNets.Comment: Submitted to IEEE Communications Magazin

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    A New Phase Transition for Local Delays in MANETs

    Get PDF
    We consider Mobile Ad-hoc Network (MANET) with transmitters located according to a Poisson point in the Euclidean plane, slotted Aloha Medium Access (MAC) protocol and the so-called outage scenario, where a successful transmission requires a Signal-to-Interference-and-Noise (SINR) larger than some threshold. We analyze the local delays in such a network, namely the number of times slots required for nodes to transmit a packet to their prescribed next-hop receivers. The analysis depends very much on the receiver scenario and on the variability of the fading. In most cases, each node has finite-mean geometric random delay and thus a positive next hop throughput. However, the spatial (or large population) averaging of these individual finite mean-delays leads to infinite values in several practical cases, including the Rayleigh fading and positive thermal noise case. In some cases it exhibits an interesting phase transition phenomenon where the spatial average is finite when certain model parameters are below a threshold and infinite above. We call this phenomenon, contention phase transition. We argue that the spatial average of the mean local delays is infinite primarily because of the outage logic, where one transmits full packets at time slots when the receiver is covered at the required SINR and where one wastes all the other time slots. This results in the "RESTART" mechanism, which in turn explains why we have infinite spatial average. Adaptive coding offers a nice way of breaking the outage/RESTART logic. We show examples where the average delays are finite in the adaptive coding case, whereas they are infinite in the outage case.Comment: accepted for IEEE Infocom 201

    A note on uniform power connectivity in the SINR model

    Full text link
    In this paper we study the connectivity problem for wireless networks under the Signal to Interference plus Noise Ratio (SINR) model. Given a set of radio transmitters distributed in some area, we seek to build a directed strongly connected communication graph, and compute an edge coloring of this graph such that the transmitter-receiver pairs in each color class can communicate simultaneously. Depending on the interference model, more or less colors, corresponding to the number of frequencies or time slots, are necessary. We consider the SINR model that compares the received power of a signal at a receiver to the sum of the strength of other signals plus ambient noise . The strength of a signal is assumed to fade polynomially with the distance from the sender, depending on the so-called path-loss exponent α\alpha. We show that, when all transmitters use the same power, the number of colors needed is constant in one-dimensional grids if α>1\alpha>1 as well as in two-dimensional grids if α>2\alpha>2. For smaller path-loss exponents and two-dimensional grids we prove upper and lower bounds in the order of O(logn)\mathcal{O}(\log n) and Ω(logn/loglogn)\Omega(\log n/\log\log n) for α=2\alpha=2 and Θ(n2/α1)\Theta(n^{2/\alpha-1}) for α<2\alpha<2 respectively. If nodes are distributed uniformly at random on the interval [0,1][0,1], a \emph{regular} coloring of O(logn)\mathcal{O}(\log n) colors guarantees connectivity, while Ω(loglogn)\Omega(\log \log n) colors are required for any coloring.Comment: 13 page
    corecore