934,231 research outputs found

    Time Protection: the Missing OS Abstraction

    Get PDF
    Timing channels enable data leakage that threatens the security of computer systems, from cloud platforms to smartphones and browsers executing untrusted third-party code. Preventing unauthorised information flow is a core duty of the operating system, however, present OSes are unable to prevent timing channels. We argue that OSes must provide time protection in addition to the established memory protection. We examine the requirements of time protection, present a design and its implementation in the seL4 microkernel, and evaluate its efficacy as well as performance overhead on Arm and x86 processors

    A novel overcurrent protection method based on wide area measurement in smart grid

    Get PDF
    PowerTech is the anchor conference of the IEEE Power & Energy Society in EuropeConventional overcurrent protection settings are fixed to detect faults. Power system operation mode varies while the settings of protection devices remain constant. As a result, overcurrent protection has a small protection range and a long operating time because it is incapable of adjusting its setting online. Wide Area Measurements System (WAMS) provides synchronized and real time data which can be utilized in new protection devices. This paper proposes a novel online setting scheme which utilizes online system data to calculate real-time system operation mode. Based on the real-time operation mode, real-time fault current is calculated before fault occurring. Settings of the protection devices are by this means adjusted in real time to expand the protection area and shorten the operating time. The calculation is expanded from single source model to multi-source with Π model. In addition, interval time of settings adjustment Tchange is proposed and calculated by using hyperbolic function model. Based on this method, power system real-time operation condition can be better monitored and the real-time short circuit current can be obtained to improve protection performance. © 2013 IEEE.published_or_final_versio

    Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    Get PDF
    The results obtained in a program to evaluate dispersion-strengthened nickel-base alloys for use in a metallic radiative thermal protection system operating at surface temperatures to 1477 K for the space shuttle were presented. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr characteristics of material used in the current study are compared with previous results; cyclic load, temperature, and pressure effects on sheet material residual strength are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded joints are evaluated; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full scale subsize heat shield panels in two configurations are described. Initial tests of full scale subsize panels included simulated meteoroid impact tests, simulated entry flight aerodynamic heating, programmed differential pressure loads and temperatures simulating mission conditions, and acoustic tests simulating sound levels experienced during boost flight

    Automated post-fault diagnosis of power system disturbances

    Get PDF
    In order to automate the analysis of SCADA and digital fault recorder (DFR) data for a transmission network operator in the UK, the authors have developed an industrial strength multi-agent system entitled protection engineering diagnostic agents (PEDA). The PEDA system integrates a number of legacy intelligent systems for analyzing power system data as autonomous intelligent agents. The integration achieved through multi-agent systems technology enhances the diagnostic support offered to engineers by focusing the analysis on the most pertinent DFR data based on the results of the analysis of SCADA. Since November 2004 the PEDA system has been operating online at a UK utility. In this paper the authors focus on the underlying intelligent system techniques, i.e. rule-based expert systems, model-based reasoning and state-of-the-art multi-agent system technology, that PEDA employs and the lessons learnt through its deployment and online use

    Shuttle/spacelab contamination environment and effects handbook

    Get PDF
    This handbook is intended to assist users of the Spacelab/Space Transportation System by providing contamination environments and effects information that may be of value in planning, designing, manufacturing, and operating a space flight experiment. A summary of available molecular and particulate contamination data on the Space Transportation System and its facilities is presented. Contamination models, contamination effects, and protection methods information are also presented. In addition to contamination, the effects of the space environments at STS altitudes on spacecraft materials are included. Extensive references, bibliographies, and contacts are provided

    Distributed operating systems

    Get PDF
    In the past five years, distributed operating systems research has gone through a consolidation phase. On a large number of design issues there is now considerable consensus between different research groups.\ud \ud In this paper, an overview of recent research in distributed systems is given. In turn, the paper discusses overall system structure, protection issues, file system designs, problems and solutions for fault tolerance and a mechanism that is rapidly becoming very important for efficient distributed systems design: hints.\ud \ud An attempt was made to provide sufficient references to interesting research projects for the reader to find material for more detailed study

    Breaker to Control Center Integration & Automation: Protection, Control, Operation & Optimization

    Get PDF
    Recent technological advances in protection, control and optimization are enabling a more automated power system. This paper proposes the use of these technologies towards an integrated and seamless infrastructure for protection, control and operation. This infrastructure is the basis for accommodating and providing robust solutions to new problems arising from the integration of renewables, namely more uncertainty and steeper ramp rates. At the lower level we propose a dynamic state estimation of a protection zone (EBP) for the purpose of providing protection for the zone. The estimation based protection (EBP) provides the real time dynamic model of the zone as well as the real time operating conditions. Since protection is ubiquitous, it can cover the full system. We assume that GPS synchronization of the EBP is available providing accurate time tags for the real time model and operating conditions. The real time model and operating conditions can extent from the “turbine to the toaster”. We propose a methodology for automatically constructing the power system state locally and centrally at the control center with distributed controls as well as centralized controls depending on the application. For example, the centralized \ system wide real time model is used to perform system optimization functions, and then send commands back through the same communication structure to specific power system components. Since protection is ubiquitous and the modern power system has several layers of communication infrastructure, the proposed approach is realizable with very small investment. The availability of the real time dynamic model and state locally and centrally enables the seamless integration of applications. Three applications are discussed in the paper: (a) setting-less protection, (b) voltage/var control and (c) feeder load flexibility scheduling. The proposed approach and infrastructure can form the basis for the next generation of Energy Management Systems.
    • 

    corecore