11,198 research outputs found

    Conditions for a Monotonic Channel Capacity

    Full text link
    Motivated by results in optical communications, where the performance can degrade dramatically if the transmit power is sufficiently increased, the channel capacity is characterized for various kinds of memoryless vector channels. It is proved that for all static point-to-point channels, the channel capacity is a nondecreasing function of power. As a consequence, maximizing the mutual information over all input distributions with a certain power is for such channels equivalent to maximizing it over the larger set of input distributions with upperbounded power. For interference channels such as optical wavelength-division multiplexing systems, the primary channel capacity is always nondecreasing with power if all interferers transmit with identical distributions as the primary user. Also, if all input distributions in an interference channel are optimized jointly, then the achievable sum-rate capacity is again nondecreasing. The results generalizes to the channel capacity as a function of a wide class of costs, not only power.Comment: This is an updated and expanded version of arXiv:1108.039

    A Beta-Beta Achievability Bound with Applications

    Get PDF
    A channel coding achievability bound expressed in terms of the ratio between two Neyman-Pearson β\beta functions is proposed. This bound is the dual of a converse bound established earlier by Polyanskiy and Verd\'{u} (2014). The new bound turns out to simplify considerably the analysis in situations where the channel output distribution is not a product distribution, for example due to a cost constraint or a structural constraint (such as orthogonality or constant composition) on the channel inputs. Connections to existing bounds in the literature are discussed. The bound is then used to derive 1) an achievability bound on the channel dispersion of additive non-Gaussian noise channels with random Gaussian codebooks, 2) the channel dispersion of the exponential-noise channel, 3) a second-order expansion for the minimum energy per bit of an AWGN channel, and 4) a lower bound on the maximum coding rate of a multiple-input multiple-output Rayleigh-fading channel with perfect channel state information at the receiver, which is the tightest known achievability result.Comment: extended version of a paper submitted to ISIT 201

    Capacity per Unit Energy of Fading Channels with a Peak Constraint

    Full text link
    A discrete-time single-user scalar channel with temporally correlated Rayleigh fading is analyzed. There is no side information at the transmitter or the receiver. A simple expression is given for the capacity per unit energy, in the presence of a peak constraint. The simple formula of Verdu for capacity per unit cost is adapted to a channel with memory, and is used in the proof. In addition to bounding the capacity of a channel with correlated fading, the result gives some insight into the relationship between the correlation in the fading process and the channel capacity. The results are extended to a channel with side information, showing that the capacity per unit energy is one nat per Joule, independently of the peak power constraint. A continuous-time version of the model is also considered. The capacity per unit energy subject to a peak constraint (but no bandwidth constraint) is given by an expression similar to that for discrete time, and is evaluated for Gauss-Markov and Clarke fading channels.Comment: Journal version of paper presented in ISIT 2003 - now accepted for publication in IEEE Transactions on Information Theor
    • …
    corecore