72 research outputs found

    Kleene Algebras, Regular Languages and Substructural Logics

    Full text link
    We introduce the two substructural propositional logics KL, KL+, which use disjunction, fusion and a unary, (quasi-)exponential connective. For both we prove strong completeness with respect to the interpretation in Kleene algebras and a variant thereof. We also prove strong completeness for language models, where each logic comes with a different interpretation. We show that for both logics the cut rule is admissible and both have a decidable consequence relation.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Bounded-analytic sequent calculi and embeddings for hypersequent logics

    Get PDF
    A sequent calculus with the subformula property has long been recognised as a highly favourable starting point for the proof theoretic investigation of a logic. However, most logics of interest cannot be presented using a sequent calculus with the subformula property. In response, many formalisms more intricate than the sequent calculus have been formulated. In this work we identify an alternative: retain the sequent calculus but generalise the subformula property to permit specific axiom substitutions and their subformulas. Our investigation leads to a classification of generalised subformula properties and is applied to infinitely many substructural, intermediate, and modal logics (specifically: those with a cut-free hypersequent calculus). We also develop a complementary perspective on the generalised subformula properties in terms of logical embeddings. This yields new complexity upper bounds for contractive-mingle substructural logics and situates isolated results on the so-called simple substitution property within a general theory

    On the Concept of a Notational Variant

    Get PDF
    In the study of modal and nonclassical logics, translations have frequently been employed as a way of measuring the inferential capabilities of a logic. It is sometimes claimed that two logics are “notational variants” if they are translationally equivalent. However, we will show that this cannot be quite right, since first-order logic and propositional logic are translationally equivalent. Others have claimed that for two logics to be notational variants, they must at least be compositionally intertranslatable. The definition of compositionality these accounts use, however, is too strong, as the standard translation from modal logic to first-order logic is not compositional in this sense. In light of this, we will explore a weaker version of this notion that we will call schematicity and show that there is no schematic translation either from first-order logic to propositional logic or from intuitionistic logic to classical logic

    Implicit and Explicit Stances in Logic

    Get PDF

    Moss' logic for ordered coalgebras

    Full text link
    We present a finitary coalgebraic logic for TT-coalgebras, where TT is a locally monotone endofunctor of the category of posets and monotone maps that preserves exact squares and finite intersections. The logic uses a single cover modality whose arity is given by the dual of the coalgebra functor TT, and the semantics of the modality is given by relation lifting. For the finitary setting to work, we need to develop a notion of a base for subobjects of TXTX. This in particular allows us to talk about a finite poset of subformulas for a given formula, and of a finite poset of successors for a given state in a coalgebra. The notion of a base is introduced generally for a category equipped with a suitable factorisation system. We prove that the resulting logic has the Hennessy-Milner property for the notion of similarity based on the notion of relation lifting. We define a sequent proof system for the logic and prove its completeness

    On the Algebra of Structural Contexts

    Get PDF
    Article dans revue scientifique avec comité de lecture.We discuss a general way of defining contexts in linear logic, based on the observation that linear universal algebra can be symmetrized by assigning an additional variable to represent the output of a term. We give two approaches to this, a syntactical one based on a new, reversible notion of term, and an algebraic one based on a simple generalization of typed operads. We relate these to each other and to known examples of logical systems, and show new examples, in particular discussing the relationship between intuitionistic and classical systems. We then present a general framework for extracting deductive system from a given theory of contexts, and prove that all these systems have cut-elimination by the means of a generic argument
    • …
    corecore