4,907 research outputs found

    Bounding the number of stable homotopy types of a parametrized family of semi-algebraic sets defined by quadratic inequalities

    Full text link
    We prove a nearly optimal bound on the number of stable homotopy types occurring in a k-parameter semi-algebraic family of sets in R\R^\ell, each defined in terms of m quadratic inequalities. Our bound is exponential in k and m, but polynomial in \ell. More precisely, we prove the following. Let R\R be a real closed field and let P={P1,...,Pm}R[Y1,...,Y,X1,...,Xk], {\mathcal P} = \{P_1,...,P_m\} \subset \R[Y_1,...,Y_\ell,X_1,...,X_k], with degY(Pi)2,degX(Pi)d,1im{\rm deg}_Y(P_i) \leq 2, {\rm deg}_X(P_i) \leq d, 1 \leq i \leq m. Let SR+kS \subset \R^{\ell+k} be a semi-algebraic set, defined by a Boolean formula without negations, whose atoms are of the form, P0,P0,PPP \geq 0, P\leq 0, P \in {\mathcal P}. Let π:R+kRk\pi: \R^{\ell+k} \to \R^k be the projection on the last k co-ordinates. Then, the number of stable homotopy types amongst the fibers S_{\x} = \pi^{-1}(\x) \cap S is bounded by (2mkd)O(mk). (2^m\ell k d)^{O(mk)}. Comment: 27 pages, 1 figur

    Approximation of definable sets by compact families, and upper bounds on homotopy and homology

    Full text link
    We prove new upper bounds on homotopy and homology groups of o-minimal sets in terms of their approximations by compact o-minimal sets. In particular, we improve the known upper bounds on Betti numbers of semialgebraic sets defined by quantifier-free formulae, and obtain for the first time a singly exponential bound on Betti numbers of sub-Pfaffian sets.Comment: 20 pages, 2 figure

    Algorithmic Semi-algebraic Geometry and Topology -- Recent Progress and Open Problems

    Full text link
    We give a survey of algorithms for computing topological invariants of semi-algebraic sets with special emphasis on the more recent developments in designing algorithms for computing the Betti numbers of semi-algebraic sets. Aside from describing these results, we discuss briefly the background as well as the importance of these problems, and also describe the main tools from algorithmic semi-algebraic geometry, as well as algebraic topology, which make these advances possible. We end with a list of open problems.Comment: Survey article, 74 pages, 15 figures. Final revision. This version will appear in the AMS Contemporary Math. Series: Proceedings of the Summer Research Conference on Discrete and Computational Geometry, Snowbird, Utah (June, 2006). J.E. Goodman, J. Pach, R. Pollack Ed

    Cylindrical Algebraic Decomposition Using Local Projections

    Full text link
    We present an algorithm which computes a cylindrical algebraic decomposition of a semialgebraic set using projection sets computed for each cell separately. Such local projection sets can be significantly smaller than the global projection set used by the Cylindrical Algebraic Decomposition (CAD) algorithm. This leads to reduction in the number of cells the algorithm needs to construct. We give an empirical comparison of our algorithm and the classical CAD algorithm

    Certification of Real Inequalities -- Templates and Sums of Squares

    Full text link
    We consider the problem of certifying lower bounds for real-valued multivariate transcendental functions. The functions we are dealing with are nonlinear and involve semialgebraic operations as well as some transcendental functions like cos\cos, arctan\arctan, exp\exp, etc. Our general framework is to use different approximation methods to relax the original problem into polynomial optimization problems, which we solve by sparse sums of squares relaxations. In particular, we combine the ideas of the maxplus estimators (originally introduced in optimal control) and of the linear templates (originally introduced in static analysis by abstract interpretation). The nonlinear templates control the complexity of the semialgebraic relaxations at the price of coarsening the maxplus approximations. In that way, we arrive at a new - template based - certified global optimization method, which exploits both the precision of sums of squares relaxations and the scalability of abstraction methods. We analyze the performance of the method on problems from the global optimization literature, as well as medium-size inequalities issued from the Flyspeck project.Comment: 27 pages, 3 figures, 4 table

    Algorithmic and topological aspects of semi-algebraic sets defined by quadratic polynomial

    Get PDF
    In this thesis, we consider semi-algebraic sets over a real closed field RR defined by quadratic polynomials. Semi-algebraic sets of RkR^k are defined as the smallest family of sets in RkR^k that contains the algebraic sets as well as the sets defined by polynomial inequalities, and which is also closed under the boolean operations (complementation, finite unions and finite intersections). We prove new bounds on the Betti numbers as well as on the number of different stable homotopy types of certain fibers of semi-algebraic sets over a real closed field RR defined by quadratic polynomials, in terms of the parameters of the system of polynomials defining them, which improve the known results. We conclude the thesis with presenting two new algorithms along with their implementations. The first algorithm computes the number of connected components and the first Betti number of a semi-algebraic set defined by compact objects in Rk\mathbb{R}^k which are simply connected. This algorithm improves the well-know method using a triangulation of the semi-algebraic set. Moreover, the algorithm has been efficiently implemented which was not possible before. The second algorithm computes efficiently the real intersection of three quadratic surfaces in R3\mathbb{R}^3 using a semi-numerical approach.Comment: PhD thesis, final version, 109 pages, 9 figure

    Matrix Convex Hulls of Free Semialgebraic Sets

    Full text link
    This article resides in the realm of the noncommutative (free) analog of real algebraic geometry - the study of polynomial inequalities and equations over the real numbers - with a focus on matrix convex sets CC and their projections C^\hat C. A free semialgebraic set which is convex as well as bounded and open can be represented as the solution set of a Linear Matrix Inequality (LMI), a result which suggests that convex free semialgebraic sets are rare. Further, Tarski's transfer principle fails in the free setting: The projection of a free convex semialgebraic set need not be free semialgebraic. Both of these results, and the importance of convex approximations in the optimization community, provide impetus and motivation for the study of the free (matrix) convex hull of free semialgebraic sets. This article presents the construction of a sequence C(d)C^{(d)} of LMI domains in increasingly many variables whose projections C^(d)\hat C^{(d)} are successively finer outer approximations of the matrix convex hull of a free semialgebraic set Dp={X:p(X)0}D_p=\{X: p(X)\succeq0\}. It is based on free analogs of moments and Hankel matrices. Such an approximation scheme is possibly the best that can be done in general. Indeed, natural noncommutative transcriptions of formulas for certain well known classical (commutative) convex hulls does not produce the convex hulls in the free case. This failure is illustrated on one of the simplest free nonconvex DpD_p. A basic question is which free sets S^\hat S are the projection of a free semialgebraic set SS? Techniques and results of this paper bear upon this question which is open even for convex sets.Comment: 41 pages; includes table of contents; supplementary material (a Mathematica notebook) can be found at http://www.math.auckland.ac.nz/~igorklep/publ.htm
    corecore