10,662 research outputs found

    Lindstrom theorems for fragments of first-order logic

    Get PDF
    Lindstr\"om theorems characterize logics in terms of model-theoretic conditions such as Compactness and the L\"owenheim-Skolem property. Most existing characterizations of this kind concern extensions of first-order logic. But on the other hand, many logics relevant to computer science are fragments or extensions of fragments of first-order logic, e.g., k-variable logics and various modal logics. Finding Lindstr\"om theorems for these languages can be challenging, as most known techniques rely on coding arguments that seem to require the full expressive power of first-order logic. In this paper, we provide Lindstr\"om theorems for several fragments of first-order logic, including the k-variable fragments for k>2, Tarski's relation algebra, graded modal logic, and the binary guarded fragment. We use two different proof techniques. One is a modification of the original Lindstr\"om proof. The other involves the modal concepts of bisimulation, tree unraveling, and finite depth. Our results also imply semantic preservation theorems.Comment: Appears in Logical Methods in Computer Science (LMCS

    Tarski's influence on computer science

    Full text link
    The influence of Alfred Tarski on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is the work of Tarski on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, modeltheoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up

    Logics of Finite Hankel Rank

    Full text link
    We discuss the Feferman-Vaught Theorem in the setting of abstract model theory for finite structures. We look at sum-like and product-like binary operations on finite structures and their Hankel matrices. We show the connection between Hankel matrices and the Feferman-Vaught Theorem. The largest logic known to satisfy a Feferman-Vaught Theorem for product-like operations is CFOL, first order logic with modular counting quantifiers. For sum-like operations it is CMSOL, the corresponding monadic second order logic. We discuss whether there are maximal logics satisfying Feferman-Vaught Theorems for finite structures.Comment: Appeared in YuriFest 2015, held in honor of Yuri Gurevich's 75th birthday. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23534-9_1

    Preservation and decomposition theorems for bounded degree structures

    Full text link
    We provide elementary algorithms for two preservation theorems for first-order sentences (FO) on the class \^ad of all finite structures of degree at most d: For each FO-sentence that is preserved under extensions (homomorphisms) on \^ad, a \^ad-equivalent existential (existential-positive) FO-sentence can be constructed in 5-fold (4-fold) exponential time. This is complemented by lower bounds showing that a 3-fold exponential blow-up of the computed existential (existential-positive) sentence is unavoidable. Both algorithms can be extended (while maintaining the upper and lower bounds on their time complexity) to input first-order sentences with modulo m counting quantifiers (FO+MODm). Furthermore, we show that for an input FO-formula, a \^ad-equivalent Feferman-Vaught decomposition can be computed in 3-fold exponential time. We also provide a matching lower bound.Comment: 42 pages and 3 figures. This is the full version of: Frederik Harwath, Lucas Heimberg, and Nicole Schweikardt. Preservation and decomposition theorems for bounded degree structures. In Joint Meeting of the 23rd EACSL Annual Conference on Computer Science Logic (CSL) and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS'14, pages 49:1-49:10. ACM, 201

    Space Efficiency of Propositional Knowledge Representation Formalisms

    Full text link
    We investigate the space efficiency of a Propositional Knowledge Representation (PKR) formalism. Intuitively, the space efficiency of a formalism F in representing a certain piece of knowledge A, is the size of the shortest formula of F that represents A. In this paper we assume that knowledge is either a set of propositional interpretations (models) or a set of propositional formulae (theorems). We provide a formal way of talking about the relative ability of PKR formalisms to compactly represent a set of models or a set of theorems. We introduce two new compactness measures, the corresponding classes, and show that the relative space efficiency of a PKR formalism in representing models/theorems is directly related to such classes. In particular, we consider formalisms for nonmonotonic reasoning, such as circumscription and default logic, as well as belief revision operators and the stable model semantics for logic programs with negation. One interesting result is that formalisms with the same time complexity do not necessarily belong to the same space efficiency class

    Verified AIG Algorithms in ACL2

    Full text link
    And-Inverter Graphs (AIGs) are a popular way to represent Boolean functions (like circuits). AIG simplification algorithms can dramatically reduce an AIG, and play an important role in modern hardware verification tools like equivalence checkers. In practice, these tricky algorithms are implemented with optimized C or C++ routines with no guarantee of correctness. Meanwhile, many interactive theorem provers can now employ SAT or SMT solvers to automatically solve finite goals, but no theorem prover makes use of these advanced, AIG-based approaches. We have developed two ways to represent AIGs within the ACL2 theorem prover. One representation, Hons-AIGs, is especially convenient to use and reason about. The other, Aignet, is the opposite; it is styled after modern AIG packages and allows for efficient algorithms. We have implemented functions for converting between these representations, random vector simulation, conversion to CNF, etc., and developed reasoning strategies for verifying these algorithms. Aside from these contributions towards verifying AIG algorithms, this work has an immediate, practical benefit for ACL2 users who are using GL to bit-blast finite ACL2 theorems: they can now optionally trust an off-the-shelf SAT solver to carry out the proof, instead of using the built-in BDD package. Looking to the future, it is a first step toward implementing verified AIG simplification algorithms that might further improve GL performance.Comment: In Proceedings ACL2 2013, arXiv:1304.712

    Independence in CLP Languages

    Get PDF
    Studying independence of goals has proven very useful in the context of logic programming. In particular, it has provided a formal basis for powerful automatic parallelization tools, since independence ensures that two goals may be evaluated in parallel while preserving correctness and eciency. We extend the concept of independence to constraint logic programs (CLP) and prove that it also ensures the correctness and eciency of the parallel evaluation of independent goals. Independence for CLP languages is more complex than for logic programming as search space preservation is necessary but no longer sucient for ensuring correctness and eciency. Two additional issues arise. The rst is that the cost of constraint solving may depend upon the order constraints are encountered. The second is the need to handle dynamic scheduling. We clarify these issues by proposing various types of search independence and constraint solver independence, and show how they can be combined to allow dierent optimizations, from parallelism to intelligent backtracking. Sucient conditions for independence which can be evaluated \a priori" at run-time are also proposed. Our study also yields new insights into independence in logic programming languages. In particular, we show that search space preservation is not only a sucient but also a necessary condition for ensuring correctness and eciency of parallel execution

    Provability Logic and the Completeness Principle

    Full text link
    In this paper, we study the provability logic of intuitionistic theories of arithmetic that prove their own completeness. We prove a completeness theorem for theories equipped with two provability predicates □\Box and △\triangle that prove the schemes A→△AA\to\triangle A and □△S→□S\Box\triangle S\to\Box S for S∈Σ1S\in\Sigma_1. Using this theorem, we determine the logic of fast provability for a number of intuitionistic theories. Furthermore, we reprove a theorem previously obtained by M. Ardeshir and S. Mojtaba Mojtahedi determining the Σ1\Sigma_1-provability logic of Heyting Arithmetic
    • …
    corecore