104,390 research outputs found

    Comparison of Randomized Multifocal Mapping and Temporal Phase Mapping of Visual Cortex for Clinical Use

    Get PDF
    fMRI is becoming an important clinical tool for planning and guidance of surgery to treat brain tumors, arteriovenous malformations, and epileptic foci. For visual cortex mapping, the most popular paradigm by far is temporal phase mapping, although random multifocal stimulation paradigms have drawn increased attention due to their ability to identify complex response fields and their random properties. In this study we directly compared temporal phase and multifocal vision mapping paradigms with respect to clinically relevant factors including: time efficiency, mapping completeness, and the effects of noise. Randomized, multifocal mapping accurately decomposed the response of single voxels to multiple stimulus locations and made correct retinotopic assignments as noise levels increased despite decreasing sensitivity. Also, multifocal mapping became less efficient as the number of stimulus segments (locations) increased from 13 to 25 to 49 and when duty cycle was increased from 25% to 50%. Phase mapping, on the other hand, activated more extrastriate visual areas, was more time efficient in achieving statistically significant responses, and had better sensitivity as noise increased, though with an increase in systematic retinotopic mis-assignments. Overall, temporal phase mapping is likely to be a better choice for routine clinical applications though random multifocal mapping may offer some unique advantages for selected applications

    Minimax-optimal Inference from Partial Rankings

    Full text link
    This paper studies the problem of inferring a global preference based on the partial rankings provided by many users over different subsets of items according to the Plackett-Luce model. A question of particular interest is how to optimally assign items to users for ranking and how many item assignments are needed to achieve a target estimation error. For a given assignment of items to users, we first derive an oracle lower bound of the estimation error that holds even for the more general Thurstone models. Then we show that the Cram\'er-Rao lower bound and our upper bounds inversely depend on the spectral gap of the Laplacian of an appropriately defined comparison graph. When the system is allowed to choose the item assignment, we propose a random assignment scheme. Our oracle lower bound and upper bounds imply that it is minimax-optimal up to a logarithmic factor among all assignment schemes and the lower bound can be achieved by the maximum likelihood estimator as well as popular rank-breaking schemes that decompose partial rankings into pairwise comparisons. The numerical experiments corroborate our theoretical findings.Comment: 16 pages, 2 figure

    Project- and Group-Based Learning of Junior Writing in Biology

    Get PDF
    Writing in Biology, part of the Junior Writing Program, is inherently a project-based learning course. After a Science, Technology, Engineering, and Mathematics Teacher Education Collaborative (STEMTEC) workshop, the course was thoroughly revised. Each of six projects was modified to increase student-active and group participation. Base groups with a balanced experience constitution are established using voluntary ordering and random assignment. A walk-around during the initial meeting serves to establish bonding within the base groups. Random groups are used within exercises to stimulate student interaction and familiarity with ad hoc group cooperation. Digital images of, and by, students are used to encourage student interaction and name recognition. A website with the entire course plan is available at an archival site to complement and help elucidate the course
    • …
    corecore