3,100 research outputs found

    qq-Classical orthogonal polynomials: A general difference calculus approach

    Full text link
    It is well known that the classical families of orthogonal polynomials are characterized as eigenfunctions of a second order linear differential/difference operator. In this paper we present a study of classical orthogonal polynomials in a more general context by using the differential (or difference) calculus and Operator Theory. In such a way we obtain a unified representation of them. Furthermore, some well known results related to the Rodrigues operator are deduced. A more general characterization Theorem that the one given in [1] and [2] for the q-polynomials of the q-Askey and Hahn Tableaux, respectively, is established. Finally, the families of Askey-Wilson polynomials, q-Racah polynomials, Al-Salam & Carlitz I and II, and q-Meixner are considered. [1] R. Alvarez-Nodarse. On characterization of classical polynomials. J. Comput. Appl. Math., 196:320{337, 2006. [2] M. Alfaro and R. Alvarez-Nodarse. A characterization of the classical orthogonal discrete and q-polynomials. J. Comput. Appl. Math., 2006. In press.Comment: 18 page

    Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero system with harmonic confinement

    Full text link
    Two families (type AA and type BB) of confluent hypergeometric polynomials in several variables are studied. We describe the orthogonality properties, differential equations, and Pieri type recurrence formulas for these families. In the one-variable case, the polynomials in question reduce to the Hermite polynomials (type AA) and the Laguerre polynomials (type BB), respectively. The multivariable confluent hypergeometric families considered here may be used to diagonalize the rational quantum Calogero models with harmonic confinement (for the classical root systems) and are closely connected to the (symmetric) generalized spherical harmonics investigated by Dunkl.Comment: AMS-LaTeX v1.2 (with amssymb.sty), 34 page

    Matrix-Valued Little q-Jacobi Polynomials

    Get PDF
    Matrix-valued analogues of the little q-Jacobi polynomials are introduced and studied. For the 2x2-matrix-valued little q-Jacobi polynomials explicit expressions for the orthogonality relations, Rodrigues formula, three-term recurrence relation and their relation to matrix-valued q-hypergeometric series and the scalar-valued little q-Jacobi polynomials are presented. The study is based on a matrix-valued q-difference operator, which is a q-analogue of Tirao's matrix-valued hypergeometric differential operator.Comment: 16 pages, various corrections and minor additions, incorporating referee's comment

    Multivariable Bessel polynomials related to the hyperbolic Sutherland model with external Morse potential

    Get PDF
    A multivariable generalisation of the Bessel polynomials is introduced and studied. In particular, we deduce their series expansion in Jack polynomials, a limit transition from multivariable Jacobi polynomials, a sequence of algebraically independent eigenoperators, Pieri type recurrence relations, and certain orthogonality properties. We also show that these multivariable Bessel polynomials provide a (finite) set of eigenfunctions of the hyperbolic Sutherland model with external Morse potential.Comment: a few minor misprints correcte

    Unified Theory of Annihilation-Creation Operators for Solvable (`Discrete') Quantum Mechanics

    Get PDF
    The annihilation-creation operators a(±)a^{(\pm)} are defined as the positive/negative frequency parts of the exact Heisenberg operator solution for the `sinusoidal coordinate'. Thus a(±)a^{(\pm)} are hermitian conjugate to each other and the relative weights of various terms in them are solely determined by the energy spectrum. This unified method applies to most of the solvable quantum mechanics of single degree of freedom including those belonging to the `discrete' quantum mechanics.Comment: 43 pages, no figures, LaTeX2e, with amsmath, amssym
    corecore