3,581 research outputs found

    On polygons enclosing point sets II

    Get PDF
    Let R and B be disjoint point sets such that R∪BR\cup B is in general position. We say that B encloses by R if there is a simple polygon P with vertex set B such that all the elements in R belong to the interior of P. In this paper we prove that if the vertices of the convex hull of R∪BR\cup B belong to B, and |R| ≤ |Conv(B)| − 1 then B encloses R. The bound is tight. This improves on results of a previous paper in which it was proved that if |R| ≤ 56|Conv (B)| then B encloses R. To obtain our result we prove the next result which is interesting on its own right: Let P be a convex polygon with n vertices \emph{p_1},...,\emph{p_n} and S a set of m points contained in the interior of P, m ≤ n−1. Then there is a convex decomposition {P1P_1,...,PnP_n} of P such that all points from S lie on the boundaries of P1P_1,...,PnP_n, and each PiP_i contains a whole edge of P on its boundary.Postprint (published version

    On Polygons Excluding Point Sets

    Get PDF
    By a polygonization of a finite point set SS in the plane we understand a simple polygon having SS as the set of its vertices. Let BB and RR be sets of blue and red points, respectively, in the plane such that B∪RB\cup R is in general position, and the convex hull of BB contains kk interior blue points and ll interior red points. Hurtado et al. found sufficient conditions for the existence of a blue polygonization that encloses all red points. We consider the dual question of the existence of a blue polygonization that excludes all red points RR. We show that there is a minimal number K=K(l)K=K(l), which is polynomial in ll, such that one can always find a blue polygonization excluding all red points, whenever k≥Kk\geq K. Some other related problems are also considered.Comment: 14 pages, 15 figure

    On the geometric dilation of closed curves, graphs, and point sets

    Full text link
    The detour between two points u and v (on edges or vertices) of an embedded planar graph whose edges are curves is the ratio between the shortest path in in the graph between u and v and their Euclidean distance. The maximum detour over all pairs of points is called the geometric dilation. Ebbers-Baumann, Gruene and Klein have shown that every finite point set is contained in a planar graph whose geometric dilation is at most 1.678, and some point sets require graphs with dilation at least pi/2 = 1.57... We prove a stronger lower bound of 1.00000000001*pi/2 by relating graphs with small dilation to a problem of packing and covering the plane by circular disks. The proof relies on halving pairs, pairs of points dividing a given closed curve C in two parts of equal length, and their minimum and maximum distances h and H. Additionally, we analyze curves of constant halving distance (h=H), examine the relation of h to other geometric quantities and prove some new dilation bounds.Comment: 31 pages, 16 figures. The new version is the extended journal submission; it includes additional material from a conference submission (ref. [6] in the paper

    Strictly convex drawings of planar graphs

    Full text link
    Every three-connected planar graph with n vertices has a drawing on an O(n^2) x O(n^2) grid in which all faces are strictly convex polygons. These drawings are obtained by perturbing (not strictly) convex drawings on O(n) x O(n) grids. More generally, a strictly convex drawing exists on a grid of size O(W) x O(n^4/W), for any choice of a parameter W in the range n<W<n^2. Tighter bounds are obtained when the faces have fewer sides. In the proof, we derive an explicit lower bound on the number of primitive vectors in a triangle.Comment: 20 pages, 13 figures. to be published in Documenta Mathematica. The revision includes numerous small additions, corrections, and improvements, in particular: - a discussion of the constants in the O-notation, after the statement of thm.1. - a different set-up and clarification of the case distinction for Lemma

    Maximal Area Triangles in a Convex Polygon

    Full text link
    The widely known linear time algorithm for computing the maximum area triangle in a convex polygon was found incorrect recently by Keikha et. al.(arXiv:1705.11035). We present an alternative algorithm in this paper. Comparing to the only previously known correct solution, ours is much simpler and more efficient. More importantly, our new approach is powerful in solving related problems

    Green's functions for multiply connected domains via conformal mapping

    Get PDF
    A method is described for the computation of the Green's function in the complex plane corresponding to a set of K symmetrically placed polygons along the real axis. An important special case is a set of K real intervals. The method is based on a Schwarz-Christoffel conformal map of the part of the upper half-plane exterior to the problem domain onto a semi-infinite strip whose end contains K-1 slits. From the Green's function one can obtain a great deal of information about polynomial approximations, with applications in digital filters and matrix iteration. By making the end of the strip jagged, the method can be generalised to weighted Green's functions and weighted approximations

    Hamiltonian mappings and circle packing phase spaces

    Get PDF
    We introduce three area preserving maps with phase space structures which resemble circle packings. Each mapping is derived from a kicked Hamiltonian system with one of three different phase space geometries (planar, hyperbolic or spherical) and exhibits an infinite number of coexisting stable periodic orbits which appear to `pack' the phase space with circular resonances.Comment: 23 pages including 12 figures, REVTEX
    • …
    corecore