21,428 research outputs found

    Cuckoo: a Language for Implementing Memory- and Thread-safe System Services

    Full text link
    This paper is centered around the design of a thread- and memory-safe language, primarily for the compilation of application-specific services for extensible operating systems. We describe various issues that have influenced the design of our language, called Cuckoo, that guarantees safety of programs with potentially asynchronous flows of control. Comparisons are drawn between Cuckoo and related software safety techniques, including Cyclone and software-based fault isolation (SFI), and performance results suggest our prototype compiler is capable of generating safe code that executes with low runtime overheads, even without potential code optimizations. Compared to Cyclone, Cuckoo is able to safely guard accesses to memory when programs are multithreaded. Similarly, Cuckoo is capable of enforcing memory safety in situations that are potentially troublesome for techniques such as SFI

    Shining Light On Shadow Stacks

    Full text link
    Control-Flow Hijacking attacks are the dominant attack vector against C/C++ programs. Control-Flow Integrity (CFI) solutions mitigate these attacks on the forward edge,i.e., indirect calls through function pointers and virtual calls. Protecting the backward edge is left to stack canaries, which are easily bypassed through information leaks. Shadow Stacks are a fully precise mechanism for protecting backwards edges, and should be deployed with CFI mitigations. We present a comprehensive analysis of all possible shadow stack mechanisms along three axes: performance, compatibility, and security. For performance comparisons we use SPEC CPU2006, while security and compatibility are qualitatively analyzed. Based on our study, we renew calls for a shadow stack design that leverages a dedicated register, resulting in low performance overhead, and minimal memory overhead, but sacrifices compatibility. We present case studies of our implementation of such a design, Shadesmar, on Phoronix and Apache to demonstrate the feasibility of dedicating a general purpose register to a security monitor on modern architectures, and the deployability of Shadesmar. Our comprehensive analysis, including detailed case studies for our novel design, allows compiler designers and practitioners to select the correct shadow stack design for different usage scenarios.Comment: To Appear in IEEE Security and Privacy 201

    Chaotic Compilation for Encrypted Computing: Obfuscation but Not in Name

    Get PDF
    An `obfuscation' for encrypted computing is quantified exactly here, leading to an argument that security against polynomial-time attacks has been achieved for user data via the deliberately `chaotic' compilation required for security properties in that environment. Encrypted computing is the emerging science and technology of processors that take encrypted inputs to encrypted outputs via encrypted intermediate values (at nearly conventional speeds). The aim is to make user data in general-purpose computing secure against the operator and operating system as potential adversaries. A stumbling block has always been that memory addresses are data and good encryption means the encrypted value varies randomly, and that makes hitting any target in memory problematic without address decryption, yet decryption anywhere on the memory path would open up many easily exploitable vulnerabilities. This paper `solves (chaotic) compilation' for processors without address decryption, covering all of ANSI C while satisfying the required security properties and opening up the field for the standard software tool-chain and infrastructure. That produces the argument referred to above, which may also hold without encryption.Comment: 31 pages. Version update adds "Chaotic" in title and throughout paper, and recasts abstract and Intro and other sections of the text for better access by cryptologists. To the same end it introduces the polynomial time defense argument explicitly in the final section, having now set that denouement out in the abstract and intr

    From MinX to MinC: Semantics-Driven Decompilation of Recursive Datatypes

    Get PDF
    Reconstructing the meaning of a program from its binary executable is known as reverse engineering; it has a wide range of applications in software security, exposing piracy, legacy systems, etc. Since reversing is ultimately a search for meaning, there is much interest in inferring a type (a meaning) for the elements of a binary in a consistent way. Unfortunately existing approaches do not guarantee any semantic relevance for their reconstructed types. This paper presents a new and semantically-founded approach that provides strong guarantees for the reconstructed types. Key to our approach is the derivation of a witness program in a high-level language alongside the reconstructed types. This witness has the same semantics as the binary, is type correct by construction, and it induces a (justifiable) type assignment on the binary. Moreover, the approach effectively yields a type-directed decompiler. We formalise and implement the approach for reversing Minx, an abstraction of x86, to MinC, a type-safe dialect of C with recursive datatypes. Our evaluation compiles a range of textbook C algorithms to MinX and then recovers the original structures

    Sound and Precise Malware Analysis for Android via Pushdown Reachability and Entry-Point Saturation

    Full text link
    We present Anadroid, a static malware analysis framework for Android apps. Anadroid exploits two techniques to soundly raise precision: (1) it uses a pushdown system to precisely model dynamically dispatched interprocedural and exception-driven control-flow; (2) it uses Entry-Point Saturation (EPS) to soundly approximate all possible interleavings of asynchronous entry points in Android applications. (It also integrates static taint-flow analysis and least permissions analysis to expand the class of malicious behaviors which it can catch.) Anadroid provides rich user interface support for human analysts which must ultimately rule on the "maliciousness" of a behavior. To demonstrate the effectiveness of Anadroid's malware analysis, we had teams of analysts analyze a challenge suite of 52 Android applications released as part of the Auto- mated Program Analysis for Cybersecurity (APAC) DARPA program. The first team analyzed the apps using a ver- sion of Anadroid that uses traditional (finite-state-machine-based) control-flow-analysis found in existing malware analysis tools; the second team analyzed the apps using a version of Anadroid that uses our enhanced pushdown-based control-flow-analysis. We measured machine analysis time, human analyst time, and their accuracy in flagging malicious applications. With pushdown analysis, we found statistically significant (p < 0.05) decreases in time: from 85 minutes per app to 35 minutes per app in human plus machine analysis time; and statistically significant (p < 0.05) increases in accuracy with the pushdown-driven analyzer: from 71% correct identification to 95% correct identification.Comment: Appears in 3rd Annual ACM CCS workshop on Security and Privacy in SmartPhones and Mobile Devices (SPSM'13), Berlin, Germany, 201
    • …
    corecore