798,926 research outputs found

    GNA: new framework for statistical data analysis

    Full text link
    We report on the status of GNA --- a new framework for fitting large-scale physical models. GNA utilizes the data flow concept within which a model is represented by a directed acyclic graph. Each node is an operation on an array (matrix multiplication, derivative or cross section calculation, etc). The framework enables the user to create flexible and efficient large-scale lazily evaluated models, handle large numbers of parameters, propagate parameters' uncertainties while taking into account possible correlations between them, fit models, and perform statistical analysis. The main goal of the paper is to give an overview of the main concepts and methods as well as reasons behind their design. Detailed technical information is to be published in further works.Comment: 9 pages, 3 figures, CHEP 2018, submitted to EPJ Web of Conference

    Evolution, nucleosynthesis and yields of AGB stars at different metallicities (III): intermediate mass models, revised low mass models and the ph-FRUITY interface

    Get PDF
    We present a new set of models for intermediate mass AGB stars (4.0, 5.0 and, 6.0 Msun) at different metallicities (-2.15<=Fe/H]<=+0.15). This integrates the existing set of models for low mass AGB stars (1.3<=M/M<=3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the Main Sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. The latter is due to the fact that the interpulse phases are short and, then, Thermal Pulses are weak. Moreover, the high temperature at the base of the convective envelope prevents it to deeply penetrate the radiative underlying layers. Depending on the initial stellar mass, the heavy elements nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the \nean~reaction, which is efficiently activated during Thermal Pulses. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the weight that intermediate mass models have on the carbon stars luminosity function. Finally, we present the upgrade of the FRUITY web interface, now also including the physical quantities of the TP-AGB phase of all the models included in the database (ph-FRUITY).Comment: Accepted for publication on ApJ

    Fitness-dependent topological properties of the World Trade Web

    Full text link
    Among the proposed network models, the hidden variable (or good get richer) one is particularly interesting, even if an explicit empirical test of its hypotheses has not yet been performed on a real network. Here we provide the first empirical test of this mechanism on the world trade web, the network defined by the trade relationships between world countries. We find that the power-law distributed gross domestic product can be successfully identified with the hidden variable (or fitness) determining the topology of the world trade web: all previously studied properties up to third-order correlation structure (degree distribution, degree correlations and hierarchy) are found to be in excellent agreement with the predictions of the model. The choice of the connection probability is such that all realizations of the network with the same degree sequence are equiprobable.Comment: 4 Pages, 4 Figures. Final version accepted for publication on Physical Review Letter

    DOBBS: Towards a Comprehensive Dataset to Study the Browsing Behavior of Online Users

    Full text link
    The investigation of the browsing behavior of users provides useful information to optimize web site design, web browser design, search engines offerings, and online advertisement. This has been a topic of active research since the Web started and a large body of work exists. However, new online services as well as advances in Web and mobile technologies clearly changed the meaning behind "browsing the Web" and require a fresh look at the problem and research, specifically in respect to whether the used models are still appropriate. Platforms such as YouTube, Netflix or last.fm have started to replace the traditional media channels (cinema, television, radio) and media distribution formats (CD, DVD, Blu-ray). Social networks (e.g., Facebook) and platforms for browser games attracted whole new, particularly less tech-savvy audiences. Furthermore, advances in mobile technologies and devices made browsing "on-the-move" the norm and changed the user behavior as in the mobile case browsing is often being influenced by the user's location and context in the physical world. Commonly used datasets, such as web server access logs or search engines transaction logs, are inherently not capable of capturing the browsing behavior of users in all these facets. DOBBS (DERI Online Behavior Study) is an effort to create such a dataset in a non-intrusive, completely anonymous and privacy-preserving way. To this end, DOBBS provides a browser add-on that users can install, which keeps track of their browsing behavior (e.g., how much time they spent on the Web, how long they stay on a website, how often they visit a website, how they use their browser, etc.). In this paper, we outline the motivation behind DOBBS, describe the add-on and captured data in detail, and present some first results to highlight the strengths of DOBBS

    The Pisa Stellar Evolution Data Base for low-mass stars

    Full text link
    The last decade showed an impressive observational effort from the photometric and spectroscopic point of view for ancient stellar clusters in our Galaxy and beyond. The theoretical interpretation of these new observational results requires updated evolutionary models and isochrones spanning a wide range of chemical composition. With this aim we built the new "Pisa Stellar Evolution Database" of stellar models and isochrones by adopting a well-tested evolutionary code (FRANEC) implemented with updated physical and chemical inputs. In particular, our code adopts realistic atmosphere models and an updated equation of state, nuclear reaction rates and opacities calculated with recent solar elements mixture. A total of 32646 models have been computed in the range of initial masses 0.30 - 1.10 Msun for a grid of 216 chemical compositions with the fractional metal abundance in mass, Z, ranging from 0.0001 to 0.01, and the original helium content, Y, from 0.25 to 0.42. Models were computed for both solar-scaled and alpha-enhanced abundances with different external convection efficiencies. Correspondingly, 9720 isochrones were computed in the age range 8 - 15 Gyr, in time steps of 0.5 Gyr. The whole database is available to the scientific community on the web. Models and isochrones were compared with recent calculations available in the literature and with the color-magnitude diagram of selected Galactic globular clusters. The dependence of relevant evolutionary quantities on the chemical composition and convection efficiency were analyzed in a quantitative statistical way and analytical formulations were made available for reader's convenience.Comment: Accepted for publication in A&
    corecore