6,415 research outputs found

    Efficient electrochemical model for lithium-ion cells

    Get PDF
    Lithium-ion batteries are used to store energy in electric vehicles. Physical models based on electro-chemistry accurately predict the cell dynamics, in particular the state of charge. However, these models are nonlinear partial differential equations coupled to algebraic equations, and they are computationally intensive. Furthermore, a variable solid-state diffusivity model is recommended for cells with a lithium ion phosphate positive electrode to provide more accuracy. This variable structure adds more complexities to the model. However, a low-order model is required to represent the lithium-ion cells' dynamics for real-time applications. In this paper, a simplification of the electrochemical equations with variable solid-state diffusivity that preserves the key cells' dynamics is derived. The simplified model is transformed into a numerically efficient fully dynamical form. It is proved that the simplified model is well-posed and can be approximated by a low-order finite-dimensional model. Simulations are very quick and show good agreement with experimental data

    Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter

    Full text link
    This paper investigates the state estimation of a high-fidelity spatially resolved thermal- electrochemical lithium-ion battery model commonly referred to as the pseudo two-dimensional model. The partial-differential algebraic equations (PDAEs) constituting the model are spatially discretised using Chebyshev orthogonal collocation enabling fast and accurate simulations up to high C-rates. This implementation of the pseudo-2D model is then used in combination with an extended Kalman filter algorithm for differential-algebraic equations to estimate the states of the model. The state estimation algorithm is able to rapidly recover the model states from current, voltage and temperature measurements. Results show that the error on the state estimate falls below 1 % in less than 200 s despite a 30 % error on battery initial state-of-charge and additive measurement noise with 10 mV and 0.5 K standard deviations.Comment: Submitted to the Journal of Power Source

    Low-cost programmable battery dischargers and application in battery model identification

    Get PDF
    This paper describes a study where a low-cost programmable battery discharger was built from basic electronic components, the popular MATLAB programming environment, and an low-cost Arduino microcontroller board. After its components and their function are explained in detail, a case study is performed to evaluate the discharger's performance. The setup is principally suitable for any type of battery cell or small packs. Here a 7.2 V NiMH battery pack including six cells is used. Consecutive discharge current pulses are applied and the terminal voltage is measured as the output. With the measured data, battery model identification is performed using a simple equivalent circuit model containing the open circuit voltage and the internal resistance. The identification results are then tested by repeating similar tests. Consistent results demonstrate accuracy of the identified battery parameters, which also confirms the quality of the measurement. Furthermore, it is demonstrated that the identification method is fast enough to be used in real-time applications

    Identifiability and parameter estimation of the single particle lithium-ion battery model

    Full text link
    This paper investigates the identifiability and estimation of the parameters of the single particle model (SPM) for lithium-ion battery simulation. Identifiability is addressed both in principle and in practice. The approach begins by grouping parameters and partially non-dimensionalising the SPM to determine the maximum expected degrees of freedom in the problem. We discover that, excluding open circuit voltage, there are only six independent parameters. We then examine the structural identifiability by considering whether the transfer function of the linearised SPM is unique. It is found that the model is unique provided that the electrode open circuit voltage functions have a known non-zero gradient, the parameters are ordered, and the electrode kinetics are lumped into a single charge transfer resistance parameter. We then demonstrate the practical estimation of model parameters from measured frequency-domain experimental electrochemical impedance spectroscopy (EIS) data, and show additionally that the parametrised model provides good predictive capabilities in the time domain, exhibiting a maximum voltage error of 20 mV between model and experiment over a 10 minute dynamic discharge.Comment: 16 pages, 9 figures, pre-print submitted to the IEEE Transactions on Control Systems Technolog

    SoC estimation for lithium-ion batteries : review and future challenges

    Get PDF
    ABSTRACT: Energy storage emerged as a top concern for the modern cities, and the choice of the lithium-ion chemistry battery technology as an effective solution for storage applications proved to be a highly efficient option. State of charge (SoC) represents the available battery capacity and is one of the most important states that need to be monitored to optimize the performance and extend the lifetime of batteries. This review summarizes the methods for SoC estimation for lithium-ion batteries (LiBs). The SoC estimation methods are presented focusing on the description of the techniques and the elaboration of their weaknesses for the use in on-line battery management systems (BMS) applications. SoC estimation is a challenging task hindered by considerable changes in battery characteristics over its lifetime due to aging and to the distinct nonlinear behavior. This has led scholars to propose different methods that clearly raised the challenge of establishing a relationship between the accuracy and robustness of the methods, and their low complexity to be implemented. This paper publishes an exhaustive review of the works presented during the last five years, where the tendency of the estimation techniques has been oriented toward a mixture of probabilistic techniques and some artificial intelligence

    Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data - Part B : cycling operation

    Get PDF
    Conventional Li-ion battery ageing models, such as electrochemical, semi-empirical and empirical models, require a significant amount of time and experimental resources to provide accurate predictions under realistic operating conditions. At the same time, there is significant interest from industry in the introduction of new data collection telemetry technology. This implies the forthcoming availability of a significant amount of real-world battery operation data. In this context, the development of ageing models able to learn from in-field battery operation data is an interesting solution to mitigate the need for exhaustive laboratory testing. In a series of two papers, a data-driven ageing model is developed for Li-ion batteries under the Gaussian Process framework. A special emphasis is placed on illustrating the ability of the Gaussian Process model to learn from new data observations, providing more accurate and confident predictions, and extending the operating window of the model. The first paper of the series focussed on the systematic modelling and experimental verification of cell degradation through calendar ageing. Conversantly, this second paper addresses the same research challenge when the cell is electrically cycled. A specific covariance function is composed, tailored for use in a battery ageing application. Over an extensive dataset involving 124 cells tested during more than three years, different training possibilities are contemplated in order to quantify the minimal number of laboratory tests required for the design of an accurate ageing model. A model trained with only 26 tested cells achieves an overall mean-absolute-error of 1.04% in the capacity curve prediction, after being validated under a broad window of both dynamic and static cycling temperatures, Depth-of-Discharge, middle-SOC, charging and discharging C-rates
    • …
    corecore