14,294 research outputs found

    Promote-IT: An efficient Real-Time Tertiary-Storage Scheduler

    Get PDF
    Promote-IT is an efficient heuristic scheduler that provides QoS guarantees for accessing data from tertiary storage. It can deal with a wide variety of requests and jukebox hardware. It provides short response and confirmation times, and makes good use of the jukebox resources. It separates the scheduling and dispatching functionality and effectively uses this separation to dispatch tasks earlier than scheduled, provided that the resource constraints are respected and no task misses its deadline. To prove the efficiency of Promote-IT we implemented alternative schedulers based on different scheduling models and scheduling paradigms. The evaluation shows that Promote-IT performs better than the other heuristic schedulers. Additionally, Promote-IT provides response-times near the optimum in cases where the optimal scheduler can be computed

    Real-time disk scheduling in a mixed-media file system

    Get PDF
    This paper presents our real-time disk scheduler called the Delta L scheduler, which optimizes unscheduled best-effort disk requests by giving priority to best-effort disk requests while meeting real-time request deadlines. Our scheduler tries to execute real-time disk requests as much as possible in the background. Only when real-time request deadlines are endangered, our scheduler gives priority to real-time disk requests. The Delta L disk scheduler is part of our mixed-media file system called Clockwise. An essential part of our work is extensive and detailed raw disk performance measurements. The Delta L disk scheduler for its real-time schedulability analysis and to decide whether scheduling a best-effort request before a real-time request violates real-time constraints uses these raw performance measurements. Further, a Clockwise off-line simulator uses the raw performance measurements where a number of different disk schedulers are compared. We compare the Delta L scheduler with a prioritizing Latest Start Time (LST) scheduler and non-prioritizing EDF scheduler. The Delta L scheduler is comparable to LST in achieving low latencies for best-effort requests under light to moderate real-time loads and better in achieving low latencies for best-effort requests for extreme real-time loads. The simulator is calibrated to an actual Clockwise. Clockwise runs on a 200MHz Pentium-Pro based PC with PCI bus, multiple SCSI controllers and disks on Linux 2.2.x and the Nemesis kernel. Clockwise performance is dictated by the hardware: all available bandwidth can be committed to real-time streams, provided hardware overloads do not occur

    Implementing and Evaluating Jukebox Schedulers Using JukeTools

    Get PDF
    Scheduling jukebox resources is important to build efficient and flexible hierarchical storage systems. JukeTools is a toolbox that helps in the complex tasks of implementing and evaluating jukebox schedulers. It allows the fast development of jukebox schedulers. The schedulers can be tested in numerous environments, both real and simulated types. JukeTools helps the developer to easily detect errors in the schedules. Analyzer tools create detailed reports on the behavior and performance of any of the scheduler, and provide comparisons between different schedulers. This paper describes the functionality offered by JukeTools, with special emphasis on how the toolbox can be used to develop jukebox schedulers

    Test, Control and Monitor System (TCMS) operations plan

    Get PDF
    The purpose is to provide a clear understanding of the Test, Control and Monitor System (TCMS) operating environment and to describe the method of operations for TCMS. TCMS is a complex and sophisticated checkout system focused on support of the Space Station Freedom Program (SSFP) and related activities. An understanding of the TCMS operating environment is provided and operational responsibilities are defined. NASA and the Payload Ground Operations Contractor (PGOC) will use it as a guide to manage the operation of the TCMS computer systems and associated networks and workstations. All TCMS operational functions are examined. Other plans and detailed operating procedures relating to an individual operational function are referenced within this plan. This plan augments existing Technical Support Management Directives (TSMD's), Standard Practices, and other management documentation which will be followed where applicable

    Autonomic care platform for optimizing query performance

    Get PDF
    Background: As the amount of information in electronic health care systems increases, data operations get more complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making. Manual optimization of query executions has become difficult to handle due to the increased amount of queries across multiple sources. Hence, a more automated management is necessary to increase the performance of database queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control loops in network and software systems, this approach has not been applied so far for health information systems. Methods: We extend the COSARA architecture, an infection surveillance and antibiotic management service platform for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the execution time of microbiology queries directly related to the visual displays of patients' data on the bedside screens. Results: The results show that autonomic control loops are beneficial for the optimizations in the data executions in the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of microbiology results. The combined application of the reactive and deliberative control loop results in an average query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a reduction of 13.04%. Conclusions: We found that by controlled reduction of queries' executions the performance for the end-user can be improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive effect on the timely data visualization for the physician and nurse

    End-Point Resource Admission Control for Remote Control Multimedia Applications

    Get PDF
    One goal in certain classes of networked multimedia applications, such as full-feedback remote control, is to provide end-to-end guarantees. To achieve guarantees, all resources along the path(s) between the resource(s) and sink(s) must be controlled. Resource availability is checked by the admission service during the call establishment phase. Current admission services control only network resources such as bandwidth and network delay. To provide end-to-end guarantees, the networked applications also need operation system resources and I/O devices at the endpoints. All such resources must be included in a robust admission process. By integrating the end-point resources, we observed several dependencies which force changes in admission algorithms designed and implemented for control of a single resource. We have designed and implemented the multi-level admission service within our Omega architecture which controls the availability of end-point resources needed in remote control multimedia applications such as telerobotics
    corecore