7,462 research outputs found

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5

    Energy Efficiency in Two-Tiered Wireless Sensor Networks

    Full text link
    We study a two-tiered wireless sensor network (WSN) consisting of NN access points (APs) and MM base stations (BSs). The sensing data, which is distributed on the sensing field according to a density function ff, is first transmitted to the APs and then forwarded to the BSs. Our goal is to find an optimal deployment of APs and BSs to minimize the average weighted total, or Lagrangian, of sensor and AP powers. For M=1M=1, we show that the optimal deployment of APs is simply a linear transformation of the optimal NN-level quantizer for density ff, and the sole BS should be located at the geometric centroid of the sensing field. Also, for a one-dimensional network and uniform ff, we determine the optimal deployment of APs and BSs for any NN and MM. Moreover, to numerically optimize node deployment for general scenarios, we propose one- and two-tiered Lloyd algorithms and analyze their convergence properties. Simulation results show that, when compared to random deployment, our algorithms can save up to 79\% of the power on average.Comment: 11 pages, 7 figure

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore