48 research outputs found

    Modern meat: the next generation of meat from cells

    Get PDF
    Modern Meat is the first textbook on cultivated meat, with contributions from over 100 experts within the cultivated meat community. The Sections of Modern Meat comprise 5 broad categories of cultivated meat: Context, Impact, Science, Society, and World. The 19 chapters of Modern Meat, spread across these 5 sections, provide detailed entries on cultivated meat. They extensively tour a range of topics including the impact of cultivated meat on humans and animals, the bioprocess of cultivated meat production, how cultivated meat may become a food option in Space and on Mars, and how cultivated meat may impact the economy, culture, and tradition of Asia

    Optimization of 5G Second Phase Heterogeneous Radio Access Networks with Small Cells

    Get PDF
    Due to the exponential increase in high data-demanding applications and their services per coverage area, it is becoming challenging for the existing cellular network to handle the massive sum of users with their demands. It is conceded to network operators that the current wireless network may not be capable to shelter future traffic demands. To overcome the challenges the operators are taking interest in efficiently deploying the heterogeneous network. Currently, 5G is in the commercialization phase. Network evolution with addition of small cells will develop the existing wireless network with its enriched capabilities and innovative features. Presently, the 5G global standardization has introduced the 5G New Radio (NR) under the 3rd Generation Partnership Project (3GPP). It can support a wide range of frequency bands (<6 GHz to 100 GHz). For different trends and verticals, 5G NR encounters, functional splitting and its cost evaluation are well-thought-out. The aspects of network slicing to the assessment of the business opportunities and allied standardization endeavours are illustrated. The study explores the carrier aggregation (Pico cellular) technique for 4G to bring high spectral efficiency with the support of small cell massification while benefiting from statistical multiplexing gain. One has been able to obtain values for the goodput considering CA in LTE-Sim (4G), of 40 Mbps for a cell radius of 500 m and of 29 Mbps for a cell radius of 50 m, which is 3 times higher than without CA scenario (2.6 GHz plus 3.5 GHz frequency bands). Heterogeneous networks have been under investigation for many years. Heterogeneous network can improve users service quality and resource utilization compared to homogeneous networks. Quality of service can be enhanced by putting the small cells (Femtocells or Picocells) inside the Microcells or Macrocells coverage area. Deploying indoor Femtocells for 5G inside the Macro cellular network can reduce the network cost. Some service providers have started their solutions for indoor users but there are still many challenges to be addressed. The 5G air-simulator is updated to deploy indoor Femto-cell with proposed assumptions with uniform distribution. For all the possible combinations of apartments side length and transmitter power, the maximum number of supported numbers surpassed the number of users by more than two times compared to papers mentioned in the literature. Within outdoor environments, this study also proposed small cells optimization by putting the Pico cells within a Macro cell to obtain low latency and high data rate with the statistical multiplexing gain of the associated users. Results are presented 5G NR functional split six and split seven, for three frequency bands (2.6 GHz, 3.5GHz and 5.62 GHz). Based on the analysis for shorter radius values, the best is to select the 2.6 GHz to achieve lower PLR and to support a higher number of users, with better goodput, and higher profit (for cell radius u to 400 m). In 4G, with CA, from the analysis of the economic trade-off with Picocell, the Enhanced multi-band scheduler EMBS provide higher revenue, compared to those without CA. It is clearly shown that the profit of CA is more than 4 times than in the without CA scenario. This means that the slight increase in the cost of CA gives back more than 4-time profit relatively to the ”without” CA scenario.Devido ao aumento exponencial de aplicações/serviços de elevado débito por unidade de área, torna-se bastante exigente, para a rede celular existente, lidar com a enormes quantidades de utilizadores e seus requisitos. É reconhecido que as redes móveis e sem fios atuais podem não conseguir suportar a procura de tráfego junto dos operadores. Para responder a estes desafios, os operadores estão-se a interessar pelo desenvolvimento de redes heterogéneas eficientes. Atualmente, a 5G está na fase de comercialização. A evolução destas redes concretizar-se-á com a introdução de pequenas células com aptidões melhoradas e características inovadoras. No presente, os organismos de normalização da 5G globais introduziram os Novos Rádios (NR) 5G no contexto do 3rd Generation Partnership Project (3GPP). A 5G pode suportar uma gama alargada de bandas de frequência (<6 a 100 GHz). Abordam-se as divisões funcionais e avaliam-se os seus custos para as diferentes tendências e verticais dos NR 5G. Ilustram-se desde os aspetos de particionamento funcional da rede à avaliação das oportunidades de negócio, aliadas aos esforços de normalização. Exploram-se as técnicas de agregação de espetro (do inglês, CA) para pico células, em 4G, a disponibilização de eficiência espetral, com o suporte da massificação de pequenas células, e o ganho de multiplexagem estatística associado. Obtiveram-se valores do débito binário útil, considerando CA no LTE-Sim (4G), de 40 e 29 Mb/s para células de raios 500 e 50 m, respetivamente, três vezes superiores em relação ao caso sem CA (bandas de 2.6 mais 3.5 GHz). Nas redes heterogéneas, alvo de investigação há vários anos, a qualidade de serviço e a utilização de recursos podem ser melhoradas colocando pequenas células (femto- ou pico-células) dentro da área de cobertura de micro- ou macro-células). O desenvolvimento de pequenas células 5G dentro da rede com macro-células pode reduzir os custos da rede. Alguns prestadores de serviços iniciaram as suas soluções para ambientes de interior, mas ainda existem muitos desafios a ser ultrapassados. Atualizou-se o 5G air simulator para representar a implantação de femto-células de interior com os pressupostos propostos e distribuição espacial uniforme. Para todas as combinações possíveis do comprimento lado do apartamento, o número máximo de utilizadores suportado ultrapassou o número de utilizadores suportado (na literatura) em mais de duas vezes. Em ambientes de exterior, propuseram-se pico-células no interior de macro-células, de forma a obter atraso extremo-a-extremo reduzido e taxa de transmissão dados elevada, resultante do ganho de multiplexagem estatística associado. Apresentam-se resultados para as divisões funcionais seis e sete dos NR 5G, para 2.6 GHz, 3.5GHz e 5.62 GHz. Para raios das células curtos, a melhor solução será selecionar a banda dos 2.6 GHz para alcançar PLR (do inglês, PLR) reduzido e suportar um maior número de utilizadores, com débito binário útil e lucro mais elevados (para raios das células até 400 m). Em 4G, com CA, da análise do equilíbrio custos-proveitos com pico-células, o escalonamento multi-banda EMBS (do inglês, Enhanced Multi-band Scheduler) disponibiliza proveitos superiores em comparação com o caso sem CA. Mostra-se claramente que lucro com CA é mais de quatro vezes superior do que no cenário sem CA, o que significa que um aumento ligeiro no custo com CA resulta num aumento de 4-vezes no lucro relativamente ao cenário sem CA

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems

    Kidney Inflammation, Injury and Regeneration 2020

    Get PDF
    Acute kidney injury (AKI) is still associated with high morbidity and mortality incidence rates, and also bears an elevated risk of chronic kidney disease in the sequel. Whereas the kidney has a remarkable capacity for regeneration after injury and may recover completely depending on the type of renal lesions, the options for clinical intervention are restricted to fluid management and extracorporeal kidney support. The development of novel therapies to prevent AKI, to improve renal regeneration capacity after AKI, and to preserve renal function—in both the short- and long-term—is urgently needed. This Special Issue includes papers investigating the pathological mechanisms of renal inflammation and AKI and diagnostics using new biomarkers. Furthermore, experimental in vitro and in vivo studies examining potential new approaches to attenuate kidney dysfunction are included, as well as review articles

    On the Rollout of Network Slicing in Carrier Networks: A Technology Radar

    Get PDF
    Network slicing is a powerful paradigm for network operators to support use cases with widely diverse requirements atop a common infrastructure. As 5G standards are completed, and commercial solutions mature, operators need to start thinking about how to integrate network slicing capabilities in their assets, so that customer-facing solutions can be made available in their portfolio. This integration is, however, not an easy task, due to the heterogeneity of assets that typically exist in carrier networks. In this regard, 5G commercial networks may consist of a number of domains, each with a different technological pace, and built out of products from multiple vendors, including legacy network devices and functions. These multi-technology, multi-vendor and brownfield features constitute a challenge for the operator, which is required to deploy and operate slices across all these domains in order to satisfy the end-to-end nature of the services hosted by these slices. In this context, the only realistic option for operators is to introduce slicing capabilities progressively, following a phased approach in their roll-out. The purpose of this paper is to precisely help designing this kind of plan, by means of a technology radar. The radar identifies a set of solutions enabling network slicing on the individual domains, and classifies these solutions into four rings, each corresponding to a different timeline: (i) as-is ring, covering today’s slicing solutions; (ii) deploy ring, corresponding to solutions available in the short term; (iii) test ring, considering medium-term solutions; and (iv) explore ring, with solutions expected in the long run. This classification is done based on the technical availability of the solutions, together with the foreseen market demands. The value of this radar lies in its ability to provide a complete view of the slicing landscape with one single snapshot, by linking solutions to information that operators may use for decision making in their individual go-to-market strategies.H2020 European Projects 5G-VINNI (grant agreement No. 815279) and 5G-CLARITY (grant agreement No. 871428)Spanish national project TRUE-5G (PID2019-108713RB-C53

    Das spätantike Rom und die stadtrömische Senatsaristokratie (395–455 n. Chr.)

    Get PDF
    This study inquires into the political and social significance ascribed to the urban Roman senatorial aristocracy and the senate in the first half of the fifth century CE. This volume therefore examines a topic of central significance in the history of the Roman West and Christianization, connecting research perspectives from ancient history and archaeology

    Deployment of Beyond 4G Wireless Communication Networks with Carrier Aggregation

    Get PDF
    With the growing demand for new blend of applications, the user’s dependency on the Internet is increasing day by day. Mobile Internet users are giving more attention to their own experience, especially in terms of communication reliability, high data rate and service stability on the move. This increase in the demand is causing saturation of existing radio frequency bands. To address these challenges, many researchers are finding the best approach, Carrier Aggregation (CA) is one of the newest innovations which seems to fulfil the demands of future spectrum, CA is one the most important feature for Long Term Evolution - Advanced. In direction to get the upcoming International Mobile Telecommunication Advanced (IMT-Advanced) mobile requirements 1 Gb/s peak data rate, the CA scheme is presented by 3GPP to sustain high data rate using widespread frequency bandwidth up to 100 MHz. Technical issues containing the aggregation structure, its implementation, deployment scenarios, control signal technique and challenges for CA technique in LTE-Advanced, with consideration backward compatibility are highlighted. Performance evaluation in macrocellular scenarios through a simulation approach shows the benefits of applying CA and low-complexity multi-band schedulers in service quality and system capacity enhancement. The Enhanced multi-band scheduler is less complex than the General multi-band scheduler and performs better for cell radius longer than 1800 m (and a PLR threshold of 2%).This work is funded by FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/EEA/50008/2020, COST CA 15104 IRACON, ORCIP and CONQUEST (CMU/ECE/0030/2017), TeamUp5G project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie project number 813391.info:eu-repo/semantics/acceptedVersio

    Atti del IX Convegno Annuale AIUCD. La svolta inevitabile: sfide e prospettive per l'Informatica Umanistica.

    Get PDF
    La nona edizione del convegno annuale dell'Associazione per l'Informatica Umanistica e la Cultura Digitale (AIUCD 2020; Milano, 15-17 gennaio 2020) ha come tema “La svolta inevitabile: sfide e prospettive per l'Informatica Umanistica”, con lo specifico obiettivo di fornire un'occasione per riflettere sulle conseguenze della crescente diffusione dell’approccio computazionale al trattamento dei dati connessi all’ambito umanistico. Questo volume raccoglie gli articoli i cui contenuti sono stati presentati al convegno. A diversa stregua, essi affrontano il tema proposto da un punto di vista ora più teorico-metodologico, ora più empirico-pratico, presentando i risultati di lavori e progetti (conclusi o in corso) che considerino centrale il trattamento computazionale dei dati

    Atti del IX Convegno Annuale dell'Associazione per l'Informatica Umanistica e la Cultura Digitale (AIUCD). La svolta inevitabile: sfide e prospettive per l'Informatica Umanistica

    Get PDF
    Proceedings of the IX edition of the annual AIUCD conferenc

    Automotive Cognitive Access: Towards customized vehicular communication system

    Get PDF
    The evolution of Software Defined Networking (SDN) and Virtualization of mobile Network Functions (NFV) have enabled the new ways of managing mobile access systems and are seen as a major technological foundation of the Fifth Generation (5G) of mobile networks. With the appearance of 5G specifications, the mobile system architecture has the transition from a network of entities to a network of functions. This paradigm shift led to new possibilities and challenges. Existing mobile communication systems rely on closed and inflexible hardware-based architectures both at the access and core network. It implies significant challenges in implementing new techniques to maximize the network capacity, scalability and increasing performance for diverse data services. This work focuses preliminary on the architectural evolutions needed to solve challenges perceived for the next generation of mobile networks. I consider Software defined plus Virtualization featured Mobile Network (S+ MN) architecture as a baseline reference model, aiming at the further improvements to support the access requirements for diverse user groups. I consider an important class of things, vehicles, which needs efficient mobile internet access at both the system and application levels. I identify and describe key requirements of emerging vehicular communications and assess existing standards to determine their limitations. To provide optimized wireless communications for the specific user group, the 5G systems come up with network slicing as a potential solution to create customized networks. Network slicing has the capability to facilitates dynamic and efficient allocation of network resources and support diverse service scenarios and services. A network slice can be broadly defined as an end-to-end logically isolated network that includes end devices as well as access and core network functions. To this effect, I describe the enhanced behaviour of S+ MN architecture for the collection of network resources and details the potential functional grouping provided by S+ MN architecture that paves the way to support automotive slicing. The proposed enhancements support seamless connection mobility addressing the automotive access use case highly mobile environment. I follow the distribution of gateway functions to solve the problem of unnecessary long routes and delays. Exploiting the open SDN capabilities, the proposed S+ NC is able to parallelize the execution of certain control plane messages thus enabling the signalling optimisation. Furthermore, it enables the (Re)selection of efficient data plane paths with implied upper-layer service continuity mechanisms that remove the chains of IP address preservation for session continuity during IP anchor relocation. An implementation setup validates the proposed evolutions, including its core functionalities implemented using the ns-3 network simulator. The proposed slicing scheme has been evaluated through a number of scenarios such as numbers of signalling messages processed by control entities for an intersystem handover procedure relative to current mobile network architecture. I also perform the performance improvement analysis based on simulation results. Furthermore, I experimentally prove the feasibility of using Multipath TCP for connection mobility in intersystem handover scenario. The experiments run over the Linux Kernel implementation of Multipath TCP developed over the last years. I extend the Multipath TCP path management to delegates the management of the data paths according to the application needs. The implementation results have shown that the proposed S+ MN slicing architecture and enhancements achieve benefits in multiple areas, for example improving the mobility control and management, maintaining QoS, smooth handover, session continuity and efficient slice management and orchestration
    corecore