291 research outputs found

    Performability modeling with continuous accomplishment sets

    Get PDF
    A general modeling framework that permits the definition, formulation, and evaluation of performability is described. It is shown that performability relates directly to system effectiveness, and is a proper generalization of both performance and reliability. A hierarchical modeling scheme is used to formulate the capability function used to evaluate performability. The case in which performance variables take values in a continuous accomplishment set is treated explicitly

    Comparative analysis of techniques for evaluating the effectiveness of aircraft computing systems

    Get PDF
    Performability analysis is a technique developed for evaluating the effectiveness of fault-tolerant computing systems in multiphase missions. Performability was evaluated for its accuracy, practical usefulness, and relative cost. The evaluation was performed by applying performability and the fault tree method to a set of sample problems ranging from simple to moderately complex. The problems involved as many as five outcomes, two to five mission phases, permanent faults, and some functional dependencies. Transient faults and software errors were not considered. A different analyst was responsible for each technique. Significantly more time and effort were required to learn performability analysis than the fault tree method. Performability is inherently as accurate as fault tree analysis. For the sample problems, fault trees were more practical and less time consuming to apply, while performability required less ingenuity and was more checkable. Performability offers some advantages for evaluating very complex problems

    Closed-form solutions of performability

    Get PDF
    Methods which yield closed form performability solutions for continuous valued variables are developed. The models are similar to those employed in performance modeling (i.e., Markovian queueing models) but are extended so as to account for variations in structure due to faults. In particular, the modeling of a degradable buffer/multiprocessor system is considered whose performance Y is the (normalized) average throughput rate realized during a bounded interval of time. To avoid known difficulties associated with exact transient solutions, an approximate decomposition of the model is employed permitting certain submodels to be solved in equilibrium. These solutions are then incorporated in a model with fewer transient states and by solving the latter, a closed form solution of the system's performability is obtained. In conclusion, some applications of this solution are discussed and illustrated, including an example of design optimization

    The Performability Manager

    Get PDF
    The authors describe the performability manager, a distributed system component that contributes to a more effective and efficient use of system components and prevents quality of service (QoS) degradation. The performability manager dynamically reconfigures distributed systems whenever needed, to recover from failures and to permit the system to evolve over time and include new functionality. Large systems require dynamic reconfiguration to support dynamic change without shutting down the complete system. A distributed system monitor is needed to verify QoS. Monitoring a distributed system is difficult because of synchronization problems and minor differences in clock speeds. The authors describe the functionality and the operation of the performability manager (both informally and formally). Throughout the paper they illustrate the approach by an example distributed application: an ANSAware-based number translation service (NTS), from the intelligent networks (IN) area

    Energy efficient transport technology: Program summary and bibliography

    Get PDF
    The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements

    Approximate performability and dependability analysis using generalized stochastic Petri Nets

    Get PDF
    Since current day fault-tolerant and distributed computer and communication systems tend to be large and complex, their corresponding performability models will suffer from the same characteristics. Therefore, calculating performability measures from these models is a difficult and time-consuming task.\ud \ud To alleviate the largeness and complexity problem to some extent we use generalized stochastic Petri nets to describe to models and to automatically generate the underlying Markov reward models. Still however, many models cannot be solved with the current numerical techniques, although they are conveniently and often compactly described.\ud \ud In this paper we discuss two heuristic state space truncation techniques that allow us to obtain very good approximations for the steady-state performability while only assessing a few percent of the states of the untruncated model. For a class of reversible models we derive explicit lower and upper bounds on the exact steady-state performability. For a much wider class of models a truncation theorem exists that allows one to obtain bounds for the error made in the truncation. We discuss this theorem in the context of approximate performability models and comment on its applicability. For all the proposed truncation techniques we present examples showing their usefulness

    Transient analysis of manufacturing system performance

    Get PDF
    Includes bibliographical references (p. 28-34).Supported by the INDO-US Science and Technology Fellowship Program.Y. Narahari, N. Viswanadham

    Techniques for the Fast Simulation of Models of Highly dependable Systems

    Get PDF
    With the ever-increasing complexity and requirements of highly dependable systems, their evaluation during design and operation is becoming more crucial. Realistic models of such systems are often not amenable to analysis using conventional analytic or numerical methods. Therefore, analysts and designers turn to simulation to evaluate these models. However, accurate estimation of dependability measures of these models requires that the simulation frequently observes system failures, which are rare events in highly dependable systems. This renders ordinary Simulation impractical for evaluating such systems. To overcome this problem, simulation techniques based on importance sampling have been developed, and are very effective in certain settings. When importance sampling works well, simulation run lengths can be reduced by several orders of magnitude when estimating transient as well as steady-state dependability measures. This paper reviews some of the importance-sampling techniques that have been developed in recent years to estimate dependability measures efficiently in Markov and nonMarkov models of highly dependable system

    Validation Methods for Fault-Tolerant avionics and control systems, working group meeting 1

    Get PDF
    The proceedings of the first working group meeting on validation methods for fault tolerant computer design are presented. The state of the art in fault tolerant computer validation was examined in order to provide a framework for future discussions concerning research issues for the validation of fault tolerant avionics and flight control systems. The development of positions concerning critical aspects of the validation process are given
    • …
    corecore