7,844 research outputs found

    Efficiently listing bounded length st-paths

    Full text link
    The problem of listing the KK shortest simple (loopless) stst-paths in a graph has been studied since the early 1960s. For a non-negatively weighted graph with nn vertices and mm edges, the most efficient solution is an O(K(mn+n2logn))O(K(mn + n^2 \log n)) algorithm for directed graphs by Yen and Lawler [Management Science, 1971 and 1972], and an O(K(m+nlogn))O(K(m+n \log n)) algorithm for the undirected version by Katoh et al. [Networks, 1982], both using O(Kn+m)O(Kn + m) space. In this work, we consider a different parameterization for this problem: instead of bounding the number of stst-paths output, we bound their length. For the bounded length parameterization, we propose new non-trivial algorithms matching the time complexity of the classic algorithms but using only O(m+n)O(m+n) space. Moreover, we provide a unified framework such that the solutions to both parameterizations -- the classic KK-shortest and the new length-bounded paths -- can be seen as two different traversals of a same tree, a Dijkstra-like and a DFS-like traversal, respectively.Comment: 12 pages, accepted to IWOCA 201

    Parametric shortest-path algorithms via tropical geometry

    Full text link
    We study parameterized versions of classical algorithms for computing shortest-path trees. This is most easily expressed in terms of tropical geometry. Applications include shortest paths in traffic networks with variable link travel times.Comment: 24 pages and 8 figure

    Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling

    Full text link
    A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. An important class of distance labeling schemes is that of hub labelings, where a node vGv \in G stores its distance to the so-called hubs SvVS_v \subseteq V, chosen so that for any u,vVu,v \in V there is wSuSvw \in S_u \cap S_v belonging to some shortest uvuv path. Notice that for most existing graph classes, the best distance labelling constructions existing use at some point a hub labeling scheme at least as a key building block. Our interest lies in hub labelings of sparse graphs, i.e., those with E(G)=O(n)|E(G)| = O(n), for which we show a lowerbound of n2O(logn)\frac{n}{2^{O(\sqrt{\log n})}} for the average size of the hubsets. Additionally, we show a hub-labeling construction for sparse graphs of average size O(nRS(n)c)O(\frac{n}{RS(n)^{c}}) for some 0<c<10 < c < 1, where RS(n)RS(n) is the so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced matchings in dense graphs. This implies that further improving the lower bound on hub labeling size to n2(logn)o(1)\frac{n}{2^{(\log n)^{o(1)}}} would require a breakthrough in the study of lower bounds on RS(n)RS(n), which have resisted substantial improvement in the last 70 years. For general distance labeling of sparse graphs, we show a lowerbound of 12O(logn)SumIndex(n)\frac{1}{2^{O(\sqrt{\log n})}} SumIndex(n), where SumIndex(n)SumIndex(n) is the communication complexity of the Sum-Index problem over ZnZ_n. Our results suggest that the best achievable hub-label size and distance-label size in sparse graphs may be Θ(n2(logn)c)\Theta(\frac{n}{2^{(\log n)^c}}) for some 0<c<10<c < 1
    corecore