2,547 research outputs found

    Shortest Paths Avoiding Forbidden Subpaths

    Get PDF
    In this paper we study a variant of the shortest path problem in graphs: given a weighted graph G and vertices s and t, and given a set X of forbidden paths in G, find a shortest s-t path P such that no path in X is a subpath of P. Path P is allowed to repeat vertices and edges. We call each path in X an exception, and our desired path a shortest exception-avoiding path. We formulate a new version of the problem where the algorithm has no a priori knowledge of X, and finds out about an exception x in X only when a path containing x fails. This situation arises in computing shortest paths in optical networks. We give an algorithm that finds a shortest exception avoiding path in time polynomial in |G| and |X|. The main idea is to run Dijkstra's algorithm incrementally after replicating vertices when an exception is discovered.Comment: 12 pages, 2 figures. Fixed a few typos, rephrased a few sentences, and used the STACS styl

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page

    Generalized Tur\'an problems for even cycles

    Full text link
    Given a graph HH and a set of graphs F\mathcal F, let ex(n,H,F)ex(n,H,\mathcal F) denote the maximum possible number of copies of HH in an F\mathcal F-free graph on nn vertices. We investigate the function ex(n,H,F)ex(n,H,\mathcal F), when HH and members of F\mathcal F are cycles. Let CkC_k denote the cycle of length kk and let Ck={C3,C4,…,Ck}\mathscr C_k=\{C_3,C_4,\ldots,C_k\}. Some of our main results are the following. (i) We show that ex(n,C2l,C2k)=Θ(nl)ex(n, C_{2l}, C_{2k}) = \Theta(n^l) for any l,k≥2l, k \ge 2. Moreover, we determine it asymptotically in the following cases: We show that ex(n,C4,C2k)=(1+o(1))(k−1)(k−2)4n2ex(n,C_4,C_{2k}) = (1+o(1)) \frac{(k-1)(k-2)}{4} n^2 and that the maximum possible number of C6C_6's in a C8C_8-free bipartite graph is n3+O(n5/2)n^3 + O(n^{5/2}). (ii) Solymosi and Wong proved that if Erd\H{o}s's Girth Conjecture holds, then for any l≥3l \ge 3 we have ex(n,C2l,C2l−1)=Θ(n2l/(l−1))ex(n,C_{2l},\mathscr C_{2l-1})=\Theta(n^{2l/(l-1)}). We prove that forbidding any other even cycle decreases the number of C2lC_{2l}'s significantly: For any k>lk > l, we have ex(n,C2l,C2l−1∪{C2k})=Θ(n2).ex(n,C_{2l},\mathscr C_{2l-1} \cup \{C_{2k}\})=\Theta(n^2). More generally, we show that for any k>lk > l and m≥2m \ge 2 such that 2k≠ml2k \neq ml, we have ex(n,Cml,C2l−1∪{C2k})=Θ(nm).ex(n,C_{ml},\mathscr C_{2l-1} \cup \{C_{2k}\})=\Theta(n^m). (iii) We prove ex(n,C2l+1,C2l)=Θ(n2+1/l),ex(n,C_{2l+1},\mathscr C_{2l})=\Theta(n^{2+1/l}), provided a strong version of Erd\H{o}s's Girth Conjecture holds (which is known to be true when l=2,3,5l = 2, 3, 5). Moreover, forbidding one more cycle decreases the number of C2l+1C_{2l+1}'s significantly: More precisely, we have ex(n,C2l+1,C2l∪{C2k})=O(n2−1l+1),ex(n, C_{2l+1}, \mathscr C_{2l} \cup \{C_{2k}\}) = O(n^{2-\frac{1}{l+1}}), and ex(n,C2l+1,C2l∪{C2k+1})=O(n2)ex(n, C_{2l+1}, \mathscr C_{2l} \cup \{C_{2k+1}\}) = O(n^2) for l>k≥2l > k \ge 2. (iv) We also study the maximum number of paths of given length in a CkC_k-free graph, and prove asymptotically sharp bounds in some cases.Comment: 37 Pages; Substantially revised, contains several new results. Mistakes corrected based on the suggestions of a refere

    On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid

    Full text link
    Golumbic, Lipshteyn and Stern \cite{Golumbic-epg} proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer kk, BkB_k-EPG graphs are defined as EPG graphs admitting a model in which each path has at most kk bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4B_4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that every circular-arc graph is B3B_3-EPG, and that there exist circular-arc graphs which are not B2B_2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in a rectangle of the grid), we obtain EPR (edge intersection of path in a rectangle) representations. We may define BkB_k-EPR graphs, k≥0k\geq 0, the same way as BkB_k-EPG graphs. Circular-arc graphs are clearly B4B_4-EPR graphs and we will show that there exist circular-arc graphs that are not B3B_3-EPR graphs. We also show that normal circular-arc graphs are B2B_2-EPR graphs and that there exist normal circular-arc graphs that are not B1B_1-EPR graphs. Finally, we characterize B1B_1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs

    Small Superpatterns for Dominance Drawing

    Full text link
    We exploit the connection between dominance drawings of directed acyclic graphs and permutations, in both directions, to provide improved bounds on the size of universal point sets for certain types of dominance drawing and on superpatterns for certain natural classes of permutations. In particular we show that there exist universal point sets for dominance drawings of the Hasse diagrams of width-two partial orders of size O(n^{3/2}), universal point sets for dominance drawings of st-outerplanar graphs of size O(n\log n), and universal point sets for dominance drawings of directed trees of size O(n^2). We show that 321-avoiding permutations have superpatterns of size O(n^{3/2}), riffle permutations (321-, 2143-, and 2413-avoiding permutations) have superpatterns of size O(n), and the concatenations of sequences of riffles and their inverses have superpatterns of size O(n\log n). Our analysis includes a calculation of the leading constants in these bounds.Comment: ANALCO 2014, This version fixes an error in the leading constant of the 321-superpattern siz

    On neighbour sum-distinguishing {0,1}\{0,1\}-edge-weightings of bipartite graphs

    Get PDF
    Let SS be a set of integers. A graph G is said to have the S-property if there exists an S-edge-weighting w:E(G)→Sw : E(G) \rightarrow S such that any two adjacent vertices have different sums of incident edge-weights. In this paper we characterise all bridgeless bipartite graphs and all trees without the {0,1}\{0,1\}-property. In particular this problem belongs to P for these graphs while it is NP-complete for all graphs.Comment: Journal versio
    • …
    corecore