597 research outputs found

    How to Learn and Generalize From Three Minutes of Data: Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential Equations

    Full text link
    We present a framework and algorithms to learn controlled dynamics models using neural stochastic differential equations (SDEs) -- SDEs whose drift and diffusion terms are both parametrized by neural networks. We construct the drift term to leverage a priori physics knowledge as inductive bias, and we design the diffusion term to represent a distance-aware estimate of the uncertainty in the learned model's predictions -- it matches the system's underlying stochasticity when evaluated on states near those from the training dataset, and it predicts highly stochastic dynamics when evaluated on states beyond the training regime. The proposed neural SDEs can be evaluated quickly enough for use in model predictive control algorithms, or they can be used as simulators for model-based reinforcement learning. Furthermore, they make accurate predictions over long time horizons, even when trained on small datasets that cover limited regions of the state space. We demonstrate these capabilities through experiments on simulated robotic systems, as well as by using them to model and control a hexacopter's flight dynamics: A neural SDE trained using only three minutes of manually collected flight data results in a model-based control policy that accurately tracks aggressive trajectories that push the hexacopter's velocity and Euler angles to nearly double the maximum values observed in the training dataset.Comment: Final submission to CoRL 202

    LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models

    Full text link
    We develop a new Low-level, First-order Probabilistic Programming Language (LF-PPL) suited for models containing a mix of continuous, discrete, and/or piecewise-continuous variables. The key success of this language and its compilation scheme is in its ability to automatically distinguish parameters the density function is discontinuous with respect to, while further providing runtime checks for boundary crossings. This enables the introduction of new inference engines that are able to exploit gradient information, while remaining efficient for models which are not everywhere differentiable. We demonstrate this ability by incorporating a discontinuous Hamiltonian Monte Carlo (DHMC) inference engine that is able to deliver automated and efficient inference for non-differentiable models. Our system is backed up by a mathematical formalism that ensures that any model expressed in this language has a density with measure zero discontinuities to maintain the validity of the inference engine.Comment: Published in the proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS

    Autonomous Exploration over Continuous Domains

    Get PDF
    Motion planning is an essential aspect of robot autonomy, and as such it has been studied for decades, producing a wide range of planning methodologies. Path planners are generally categorised as either trajectory optimisers or sampling-based planners. The latter is the predominant planning paradigm as it can resolve a path efficiently while explicitly reasoning about path safety. Yet, with a limited budget, the resulting paths are far from optimal. In contrast, state-of-the-art trajectory optimisers explicitly trade-off between path safety and efficiency to produce locally optimal paths. However, these planners cannot incorporate updates from a partially observed model such as an occupancy map and fail in planning around information gaps caused by incomplete sensor coverage. Autonomous exploration adds another twist to path planning. The objective of exploration is to safely and efficiently traverse through an unknown environment in order to map it. The desired output of such a process is a sequence of paths that efficiently and safely minimise the uncertainty of the map. However, optimising over the entire space of trajectories is computationally intractable. Therefore, most exploration algorithms relax the general formulation by optimising a simpler one, for example finding the single next best view, resulting in suboptimal performance. This thesis investigates methodologies for optimal and safe exploration over continuous paths. Contrary to existing exploration algorithms that break exploration into independent sub-problems of finding goal points and planning safe paths to these points, our holistic approach simultaneously optimises the coupled problems of where and how to explore. Thus, offering a shift in paradigm from next best view to next best path. With exploration defined as an optimisation problem over continuous paths, this thesis explores two different optimisation paradigms; Bayesian and functional

    Sampling constrained probability distributions using Spherical Augmentation

    Full text link
    Statistical models with constrained probability distributions are abundant in machine learning. Some examples include regression models with norm constraints (e.g., Lasso), probit, many copula models, and latent Dirichlet allocation (LDA). Bayesian inference involving probability distributions confined to constrained domains could be quite challenging for commonly used sampling algorithms. In this paper, we propose a novel augmentation technique that handles a wide range of constraints by mapping the constrained domain to a sphere in the augmented space. By moving freely on the surface of this sphere, sampling algorithms handle constraints implicitly and generate proposals that remain within boundaries when mapped back to the original space. Our proposed method, called {Spherical Augmentation}, provides a mathematically natural and computationally efficient framework for sampling from constrained probability distributions. We show the advantages of our method over state-of-the-art sampling algorithms, such as exact Hamiltonian Monte Carlo, using several examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian bridge regression, reconstruction of quantized stationary Gaussian process, and LDA for topic modeling.Comment: 41 pages, 13 figure

    Data-Driven Passivity-Based Control of Underactuated Robotic Systems

    Get PDF
    Classical control strategies for robotic systems are based on the idea that feedback control can be used to override the natural dynamics of the machines. Passivity-based control (Pbc) is a branch of nonlinear control theory that follows a similar approach, where the natural dynamics is modified based on the overall energy of the system. This method involves transforming a nonlinear control system, through a suitable control input, into another fictitious system that has desirable stability characteristics. The majority of Pbc techniques require the discovery of a reasonable storage function, which acts as a Lyapunov function candidate that can be used to certify stability. There are several challenges in the design of a suitable storage function, including: 1) what a reasonable choice for the function is for a given control system, and 2) the control synthesis requires a closed-form solution to a set of nonlinear partial differential equations. The latter is in general difficult to overcome, especially for systems with high degrees of freedom, limiting the applicability of Pbc techniques. A machine learning framework that automatically determines the storage function for underactuated robotic systems is introduced in this dissertation. This framework combines the expressive power of neural networks with the systematic methods of the Pbc paradigm, bridging the gap between controllers derived from learning algorithms and nonlinear control theory. A series of experiments demonstrates the efficacy and applicability of this framework for a family of underactuated robots

    Probabilistic models for data efficient reinforcement learning

    Get PDF
    Trial-and-error based reinforcement learning (RL) has seen rapid advancements in recent times, especially with the advent of deep neural networks. However, the standard deep learning methods often overlook the progress made in control theory by treating systems as black-box. We propose a model-based RL framework based on probabilistic Model Predictive Control (MPC). In particular, we propose to learn a probabilistic transition model using Gaussian Processes (GPs) to incorporate model uncertainty into long-term predictions, thereby, reducing the impact of model errors. We provide theoretical guarantees for first-order optimality in the GP-based transition models with deterministic approximate inference for long-term planning. We demonstrate that our approach not only achieves the state-of-the-art data efficiency, but also is a principled way for RL in constrained environments. When the true state of the dynamical system cannot be fully observed the standard model based methods cannot be directly applied. For these systems an additional step of state estimation is needed. We propose distributed message passing for state estimation in non-linear dynamical systems. In particular, we propose to use expectation propagation (EP) to iteratively refine the state estimate, i.e., the Gaussian posterior distribution on the latent state. We show two things: (a) Classical Rauch-Tung-Striebel (RTS) smoothers, such as the extended Kalman smoother (EKS) or the unscented Kalman smoother (UKS), are special cases of our message passing scheme; (b) running the message passing scheme more than once can lead to significant improvements over the classical RTS smoothers. We show the explicit connection between message passing with EP and well-known RTS smoothers and provide a practical implementation of the suggested algorithm. Furthermore, we address convergence issues of EP by generalising this framework to damped updates and the consideration of general -divergences. Probabilistic models can also be used to generate synthetic data. In model based RL we use ’synthetic’ data as a proxy to real environments and in order to achieve high data efficiency. The ability to generate high-fidelity synthetic data is crucial when available (real) data is limited as in RL or where privacy and data protection standards allow only for limited use of the given data, e.g., in medical and financial data-sets. Current state-of-the-art methods for synthetic data generation are based on generative models, such as Generative Adversarial Networks (GANs). Even though GANs have achieved remarkable results in synthetic data generation, they are often challenging to interpret. Furthermore, GAN-based methods can suffer when used with mixed real and categorical variables. Moreover, the loss function (discriminator loss) design itself is problem specific, i.e., the generative model may not be useful for tasks it was not explicitly trained for. In this paper, we propose to use a probabilistic model as a synthetic data generator. Learning the probabilistic model for the data is equivalent to estimating the density of the data. Based on the copula theory, we divide the density estimation task into two parts, i.e., estimating univariate marginals and estimating the multivariate copula density over the univariate marginals. We use normalising flows to learn both the copula density and univariate marginals. We benchmark our method on both simulated and real data-sets in terms of density estimation as well as the ability to generate high-fidelity synthetic data.Open Acces
    • …
    corecore