35,226 research outputs found

    Efficient Analysis of Complex Diagrams using Constraint-Based Parsing

    Full text link
    This paper describes substantial advances in the analysis (parsing) of diagrams using constraint grammars. The addition of set types to the grammar and spatial indexing of the data make it possible to efficiently parse real diagrams of substantial complexity. The system is probably the first to demonstrate efficient diagram parsing using grammars that easily be retargeted to other domains. The work assumes that the diagrams are available as a flat collection of graphics primitives: lines, polygons, circles, Bezier curves and text. This is appropriate for future electronic documents or for vectorized diagrams converted from scanned images. The classes of diagrams that we have analyzed include x,y data graphs and genetic diagrams drawn from the biological literature, as well as finite state automata diagrams (states and arcs). As an example, parsing a four-part data graph composed of 133 primitives required 35 sec using Macintosh Common Lisp on a Macintosh Quadra 700.Comment: 9 pages, Postscript, no fonts, compressed, uuencoded. Composed in MSWord 5.1a for the Mac. To appear in ICDAR '95. Other versions at ftp://ftp.ccs.neu.edu/pub/people/futrell

    Message-Passing Protocols for Real-World Parsing -- An Object-Oriented Model and its Preliminary Evaluation

    Full text link
    We argue for a performance-based design of natural language grammars and their associated parsers in order to meet the constraints imposed by real-world NLP. Our approach incorporates declarative and procedural knowledge about language and language use within an object-oriented specification framework. We discuss several message-passing protocols for parsing and provide reasons for sacrificing completeness of the parse in favor of efficiency based on a preliminary empirical evaluation.Comment: 12 pages, uses epsfig.st

    An Empirical Comparison of Parsing Methods for Stanford Dependencies

    Full text link
    Stanford typed dependencies are a widely desired representation of natural language sentences, but parsing is one of the major computational bottlenecks in text analysis systems. In light of the evolving definition of the Stanford dependencies and developments in statistical dependency parsing algorithms, this paper revisits the question of Cer et al. (2010): what is the tradeoff between accuracy and speed in obtaining Stanford dependencies in particular? We also explore the effects of input representations on this tradeoff: part-of-speech tags, the novel use of an alternative dependency representation as input, and distributional representaions of words. We find that direct dependency parsing is a more viable solution than it was found to be in the past. An accompanying software release can be found at: http://www.ark.cs.cmu.edu/TBSDComment: 13 pages, 2 figure
    • …
    corecore