228 research outputs found

    Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion

    Full text link
    Given a graph GG and a parameter kk, the Chordal Vertex Deletion (CVD) problem asks whether there exists a subset UV(G)U\subseteq V(G) of size at most kk that hits all induced cycles of size at least 4. The existence of a polynomial kernel for CVD was a well-known open problem in the field of Parameterized Complexity. Recently, Jansen and Pilipczuk resolved this question affirmatively by designing a polynomial kernel for CVD of size O(k161log58k)O(k^{161}\log^{58}k), and asked whether one can design a kernel of size O(k10)O(k^{10}). While we do not completely resolve this question, we design a significantly smaller kernel of size O(k12log10k)O(k^{12}\log^{10}k), inspired by the O(k2)O(k^2)-size kernel for Feedback Vertex Set. Furthermore, we introduce the notion of the independence degree of a vertex, which is our main conceptual contribution

    Polynomial kernels for 3-leaf power graph modification problems

    Full text link
    A graph G=(V,E) is a 3-leaf power iff there exists a tree T whose leaves are V and such that (u,v) is an edge iff u and v are at distance at most 3 in T. The 3-leaf power graph edge modification problems, i.e. edition (also known as the closest 3-leaf power), completion and edge-deletion, are FTP when parameterized by the size of the edge set modification. However polynomial kernel was known for none of these three problems. For each of them, we provide cubic kernels that can be computed in linear time for each of these problems. We thereby answer an open problem first mentioned by Dom, Guo, Huffner and Niedermeier (2005).Comment: Submitte

    Reconfiguring Independent Sets in Claw-Free Graphs

    Get PDF
    We present a polynomial-time algorithm that, given two independent sets in a claw-free graph GG, decides whether one can be transformed into the other by a sequence of elementary steps. Each elementary step is to remove a vertex vv from the current independent set SS and to add a new vertex ww (not in SS) such that the result is again an independent set. We also consider the more restricted model where vv and ww have to be adjacent

    A Polynomial Kernel for Deletion to Ptolemaic Graphs

    Get PDF
    For a family of graphs F, given a graph G and an integer k, the F-Deletion problem asks whether we can delete at most k vertices from G to obtain a graph in the family F. The F-Deletion problems for all non-trivial families F that satisfy the hereditary property on induced subgraphs are known to be NP-hard by a result of Yannakakis (STOC\u2778). Ptolemaic graphs are the graphs that satisfy the Ptolemy inequality, and they are the intersection of chordal graphs and distance-hereditary graphs. Equivalently, they form the set of graphs that do not contain any chordless cycles or a gem as an induced subgraph. (A gem is the graph on 5 vertices, where four vertices form an induced path, and the fifth vertex is adjacent to all the vertices of this induced path.) The Ptolemaic Deletion problem is the F-Deletion problem, where F is the family of Ptolemaic graphs. In this paper we study Ptolemaic Deletion from the viewpoint of Kernelization Complexity, and obtain a kernel with ?(k?) vertices for the problem
    corecore