228 research outputs found

    Recovery operators, paraconsistency and duality

    Get PDF
    There are two foundational, but not fully developed, ideas in paraconsistency, namely, the duality between paraconsistent and intuitionistic paradigms, and the introduction of logical operators that express meta-logical notions in the object language. The aim of this paper is to show how these two ideas can be adequately accomplished by the Logics of Formal Inconsistency (LFIs) and by the Logics of Formal Undeterminedness (LFUs). LFIs recover the validity of the principle of explosion in a paraconsistent scenario, while LFUs recover the validity of the principle of excluded middle in a paracomplete scenario. We introduce definitions of duality between inference rules and connectives that allow comparing rules and connectives that belong to different logics. Two formal systems are studied, the logics mbC and mbD, that display the duality between paraconsistency and paracompleteness as a duality between inference rules added to a common core– in the case studied here, this common core is classical positive propositional logic (CPL + ). The logics mbC and mbD are equipped with recovery operators that restore classical logic for, respectively, consistent and determined propositions. These two logics are then combined obtaining a pair of logics of formal inconsistency and undeterminedness (LFIUs), namely, mbCD and mbCDE. The logic mbCDE exhibits some nice duality properties. Besides, it is simultaneously paraconsistent and paracomplete, and able to recover the principles of excluded middle and explosion at once. The last sections offer an algebraic account for such logics by adapting the swap-structures semantics framework of the LFIs the LFUs. This semantics highlights some subtle aspects of these logics, and allows us to prove decidability by means of finite non-deterministic matrices

    Paraconsistency properties in degree-preserving fuzzy logics

    Get PDF
    Paraconsistent logics are specially tailored to deal with inconsistency, while fuzzy logics primarily deal with graded truth and vagueness. Aiming to find logics that can handle inconsistency and graded truth at once, in this paper we explore the notion of paraconsistent fuzzy logic. We show that degree-preserving fuzzy logics have paraconsistency features and study them as logics of formal inconsistency. We also consider their expansions with additional negation connectives and first-order formalisms and study their paraconsistency properties. Finally, we compare our approach to other paraconsistent logics in the literature. © 2014, Springer-Verlag Berlin Heidelberg.All the authors have been partially supported by the FP7 PIRSES-GA-2009-247584 project MaToMUVI. Besides, Ertola was supported by FAPESP LOGCONS Project, Esteva and Godo were supported by the Spanish project TIN2012-39348-C02-01, Flaminio was supported by the Italian project FIRB 2010 (RBFR10DGUA_02) and Noguera was suported by the grant P202/10/1826 of the Czech Science Foundation.Peer reviewe

    Basic Logic and Quantum Entanglement

    Get PDF
    As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But...can it be made explicit? In other words, is it possible to find the connective "entanglement" in a logical sequent calculus for the machine language? And also, is it possible to "teach" the quantum computer to "mimic" the EPR "paradox"? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective "entanglement"). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing.Comment: 10 pages, 1 figure,LaTeX. Shorter version for proceedings requirements. Contributed paper at DICE2006, Piombino, Ital
    • …
    corecore