13,225 research outputs found

    On Pairwise Costs for Network Flow Multi-Object Tracking

    Full text link
    Multi-object tracking has been recently approached with the min-cost network flow optimization techniques. Such methods simultaneously resolve multiple object tracks in a video and enable modeling of dependencies among tracks. Min-cost network flow methods also fit well within the "tracking-by-detection" paradigm where object trajectories are obtained by connecting per-frame outputs of an object detector. Object detectors, however, often fail due to occlusions and clutter in the video. To cope with such situations, we propose to add pairwise costs to the min-cost network flow framework. While integer solutions to such a problem become NP-hard, we design a convex relaxation solution with an efficient rounding heuristic which empirically gives certificates of small suboptimality. We evaluate two particular types of pairwise costs and demonstrate improvements over recent tracking methods in real-world video sequences

    FollowMe: Efficient Online Min-Cost Flow Tracking with Bounded Memory and Computation

    Full text link
    One of the most popular approaches to multi-target tracking is tracking-by-detection. Current min-cost flow algorithms which solve the data association problem optimally have three main drawbacks: they are computationally expensive, they assume that the whole video is given as a batch, and they scale badly in memory and computation with the length of the video sequence. In this paper, we address each of these issues, resulting in a computationally and memory-bounded solution. First, we introduce a dynamic version of the successive shortest-path algorithm which solves the data association problem optimally while reusing computation, resulting in significantly faster inference than standard solvers. Second, we address the optimal solution to the data association problem when dealing with an incoming stream of data (i.e., online setting). Finally, we present our main contribution which is an approximate online solution with bounded memory and computation which is capable of handling videos of arbitrarily length while performing tracking in real time. We demonstrate the effectiveness of our algorithms on the KITTI and PETS2009 benchmarks and show state-of-the-art performance, while being significantly faster than existing solvers

    A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects

    Full text link
    Recently, Minimum Cost Multicut Formulations have been proposed and proven to be successful in both motion trajectory segmentation and multi-target tracking scenarios. Both tasks benefit from decomposing a graphical model into an optimal number of connected components based on attractive and repulsive pairwise terms. The two tasks are formulated on different levels of granularity and, accordingly, leverage mostly local information for motion segmentation and mostly high-level information for multi-target tracking. In this paper we argue that point trajectories and their local relationships can contribute to the high-level task of multi-target tracking and also argue that high-level cues from object detection and tracking are helpful to solve motion segmentation. We propose a joint graphical model for point trajectories and object detections whose Multicuts are solutions to motion segmentation {\it and} multi-target tracking problems at once. Results on the FBMS59 motion segmentation benchmark as well as on pedestrian tracking sequences from the 2D MOT 2015 benchmark demonstrate the promise of this joint approach

    Deep Network Flow for Multi-Object Tracking

    Full text link
    Data association problems are an important component of many computer vision applications, with multi-object tracking being one of the most prominent examples. A typical approach to data association involves finding a graph matching or network flow that minimizes a sum of pairwise association costs, which are often either hand-crafted or learned as linear functions of fixed features. In this work, we demonstrate that it is possible to learn features for network-flow-based data association via backpropagation, by expressing the optimum of a smoothed network flow problem as a differentiable function of the pairwise association costs. We apply this approach to multi-object tracking with a network flow formulation. Our experiments demonstrate that we are able to successfully learn all cost functions for the association problem in an end-to-end fashion, which outperform hand-crafted costs in all settings. The integration and combination of various sources of inputs becomes easy and the cost functions can be learned entirely from data, alleviating tedious hand-designing of costs.Comment: Accepted to CVPR 201
    • …
    corecore