50,748 research outputs found

    Combined node and link partitions method for finding overlapping communities in complex networks

    Get PDF
    Community detection in complex networks is a fundamental data analysis task in various domains, and how to effectively find overlapping communities in real applications is still a challenge. In this work, we propose a new unified model and method for finding the best overlapping communities on the basis of the associated node and link partitions derived from the same framework. Specifically, we first describe a unified model that accommodates node and link communities (partitions) together, and then present a nonnegative matrix factorization method to learn the parameters of the model. Thereafter, we infer the overlapping communities based on the derived node and link communities, i.e., determine each overlapped community between the corresponding node and link community with a greedy optimization of a local community function conductance. Finally, we introduce a model selection method based on consensus clustering to determine the number of communities. We have evaluated our method on both synthetic and real-world networks with ground-truths, and compared it with seven state-of-the-art methods. The experimental results demonstrate the superior performance of our method over the competing ones in detecting overlapping communities for all analysed data sets. Improved performance is particularly pronounced in cases of more complicated networked community structures

    Sampled Weighted Min-Hashing for Large-Scale Topic Mining

    Full text link
    We present Sampled Weighted Min-Hashing (SWMH), a randomized approach to automatically mine topics from large-scale corpora. SWMH generates multiple random partitions of the corpus vocabulary based on term co-occurrence and agglomerates highly overlapping inter-partition cells to produce the mined topics. While other approaches define a topic as a probabilistic distribution over a vocabulary, SWMH topics are ordered subsets of such vocabulary. Interestingly, the topics mined by SWMH underlie themes from the corpus at different levels of granularity. We extensively evaluate the meaningfulness of the mined topics both qualitatively and quantitatively on the NIPS (1.7 K documents), 20 Newsgroups (20 K), Reuters (800 K) and Wikipedia (4 M) corpora. Additionally, we compare the quality of SWMH with Online LDA topics for document representation in classification.Comment: 10 pages, Proceedings of the Mexican Conference on Pattern Recognition 201

    Searching for network modules

    Full text link
    When analyzing complex networks a key target is to uncover their modular structure, which means searching for a family of modules, namely node subsets spanning each a subnetwork more densely connected than the average. This work proposes a novel type of objective function for graph clustering, in the form of a multilinear polynomial whose coefficients are determined by network topology. It may be thought of as a potential function, to be maximized, taking its values on fuzzy clusterings or families of fuzzy subsets of nodes over which every node distributes a unit membership. When suitably parametrized, this potential is shown to attain its maximum when every node concentrates its all unit membership on some module. The output thus is a partition, while the original discrete optimization problem is turned into a continuous version allowing to conceive alternative search strategies. The instance of the problem being a pseudo-Boolean function assigning real-valued cluster scores to node subsets, modularity maximization is employed to exemplify a so-called quadratic form, in that the scores of singletons and pairs also fully determine the scores of larger clusters, while the resulting multilinear polynomial potential function has degree 2. After considering further quadratic instances, different from modularity and obtained by interpreting network topology in alternative manners, a greedy local-search strategy for the continuous framework is analytically compared with an existing greedy agglomerative procedure for the discrete case. Overlapping is finally discussed in terms of multiple runs, i.e. several local searches with different initializations.Comment: 10 page
    • …
    corecore