1,672 research outputs found

    Can FCA-based Recommender System Suggest a Proper Classifier?

    Full text link
    The paper briefly introduces multiple classifier systems and describes a new algorithm, which improves classification accuracy by means of recommendation of a proper algorithm to an object classification. This recommendation is done assuming that a classifier is likely to predict the label of the object correctly if it has correctly classified its neighbors. The process of assigning a classifier to each object is based on Formal Concept Analysis. We explain the idea of the algorithm with a toy example and describe our first experiments with real-world datasets.Comment: 10 pages, 1 figure, 4 tables, ECAI 2014, workshop "What FCA can do for "Artifficial Intelligence

    A review of associative classification mining

    Get PDF
    Associative classification mining is a promising approach in data mining that utilizes the association rule discovery techniques to construct classification systems, also known as associative classifiers. In the last few years, a number of associative classification algorithms have been proposed, i.e. CPAR, CMAR, MCAR, MMAC and others. These algorithms employ several different rule discovery, rule ranking, rule pruning, rule prediction and rule evaluation methods. This paper focuses on surveying and comparing the state-of-the-art associative classification techniques with regards to the above criteria. Finally, future directions in associative classification, such as incremental learning and mining low-quality data sets, are also highlighted in this paper

    Automated 5-year Mortality Prediction using Deep Learning and Radiomics Features from Chest Computed Tomography

    Full text link
    We propose new methods for the prediction of 5-year mortality in elderly individuals using chest computed tomography (CT). The methods consist of a classifier that performs this prediction using a set of features extracted from the CT image and segmentation maps of multiple anatomic structures. We explore two approaches: 1) a unified framework based on deep learning, where features and classifier are automatically learned in a single optimisation process; and 2) a multi-stage framework based on the design and selection/extraction of hand-crafted radiomics features, followed by the classifier learning process. Experimental results, based on a dataset of 48 annotated chest CTs, show that the deep learning model produces a mean 5-year mortality prediction accuracy of 68.5%, while radiomics produces a mean accuracy that varies between 56% to 66% (depending on the feature selection/extraction method and classifier). The successful development of the proposed models has the potential to make a profound impact in preventive and personalised healthcare.Comment: 9 page
    • …
    corecore