316 research outputs found

    Sequential coding of Gauss-Markov sources with packet erasures and feedback

    Get PDF
    We consider the problem of sequential transmission of Gauss-Markov sources. We show that in the limit of large spatial block lengths, greedy compression with respect to the squared error distortion is optimal; that is, there is no tension between optimizing the distortion of the source in the current time instant and that of future times. We then extend this result to the case where at time t a random compression rate rt is allocated independently of the rate at other time instants. This, in turn, allows us to derive the optimal performance of sequential coding over packet-erasure channels with instantaneous feedback. For the case of packet erasures with delayed feedback, we connect the problem to that of compression with side information that is known at the encoder and may be known at the decoder — where the most recent packets serve as side information that may have been erased, and demonstrate that the loss due to a delay by one time unit is rather small

    Enhancing massive MIMO: A new approach for Uplink training based on heterogeneous coherence time

    Full text link
    Massive multiple-input multiple-output (MIMO) is one of the key technologies in future generation networks. Owing to their considerable spectral and energy efficiency gains, massive MIMO systems provide the needed performance to cope with the ever increasing wireless capacity demand. Nevertheless, the number of scheduled users stays limited in massive MIMO both in time division duplexing (TDD) and frequency division duplexing (FDD) systems. This is due to the limited coherence time, in TDD systems, and to limited feedback capacity, in FDD mode. In current systems, the time slot duration in TDD mode is the same for all users. This is a suboptimal approach since users are subject to heterogeneous Doppler spreads and, consequently, different coherence times. In this paper, we investigate a massive MIMO system operating in TDD mode in which, the frequency of uplink training differs among users based on their actual channel coherence times. We argue that optimizing uplink training by exploiting this diversity can lead to considerable spectral efficiency gain. We then provide a user scheduling algorithm that exploits a coherence interval based grouping in order to maximize the achievable weighted sum rate
    corecore