127 research outputs found

    A Neighbor Coverage-Based Probabilistic Rebroadcast for Reducing Routing Overhead in Mobile Ad Hoc Networks Using Cluster Scheme

    Get PDF
    Due to high mobility of nodes in mobile ad hoc networks (MANETs), there exist frequent link breakages which lead to frequent path failures and route discoveries. The overhead of a route discovery cannot be neglected. In a route discovery, broadcasting is a fundamental and effective data dissemination mechanism, where a mobile node blindly rebroadcasts the first received route request packets unless it has a route to the destination, and thus it causes the broadcast storm problem. In this paper, we propose a neighbor coverage-based probabilistic rebroadcast protocol for reducing routing overhead in MANETs. In order to effectively exploit the neighbor coverage knowledge, we propose a novel rebroadcast delay to determine the rebroadcast order, and then we can obtain the more accurate additional coverage ratio by sensing neighbor coverage knowledge. We also define a connectivity factor to provide the node density adaptation. By combining the additional coverage ratio and connectivity factor, we set a reasonable rebroadcast probability. Our approach combines the advantages of the neighbor coverage knowledge and the probabilistic mechanism, which can significantly decrease the number of retransmissions so as to reduce the routing overhead, and can also improve the routing performance

    Route discovery schemes in Mobile Ad hoc Networks with variable-range transmission power

    Get PDF
    Broadcasting in MANETs is important for route discovery but consumes significant amounts of power that is difficult to renew for devices that rely heavily on batteries. Most existing routing protocols make use of a broadcast scheme known as simple flooding. In such an on-demand routing protocol (e.g. AODV) the source node originates a Route Request (RREQ) packet that is blindly rebroadcast via neighbouring nodes to all nodes in the network. Simple flooding leads to serious redundancy, together with contention, and collisions, which is often called the broadcast storm problem. This thesis proposes two improvement strategies: topology control (adjusting transmission power) and reduced retransmissions (reducing redundant rebroadcasts) to reduce energy consumption. For energy efficient route discovery the main idea is to reduce the energy consumed per broadcast during route discovery. An Energy Efficient Adaptive Forwarding Algorithm (called EEAFA) is proposed to reduce the impact of RREQ packet flooding in on-demand routing protocols. The algorithm operates in two phases: 1) Topology construction phase, which establishes a more scalable and energy efficient network structure where nodes can adjust their transmission power range dynamically, based on their local density. 2) A Forwarding Node Determination phase, that utilises network information provided by the constructed topology, where nodes independently decide to forward a RREQ packet or not without relying on GPS or any distance calculations. A further Enhanced EEAFA (called E-EEAFA) algorithm is also proposed, which combines two techniques: graph colouring and sectoring techniques. Graph colouring increases awareness at network nodes to improve the determination of a forwarding node, while the sectoring technique divides neighbours into different forwarding sectors. This helps to reduce overlap between forwarding nodes and select suitable nodes in each sector to forward RREQ packets. These techniques are employed in a distributed manner and collaborate to reduce the number of forwarding nodes, which thus reduces the volume of RREQ packets populating the network. These algorithms have been validated as effective by NS2 simulation studies that are detailed in the thesis

    Efficient Routing Protocol in MANET

    Get PDF
    Ad hoc wireless mobile network does not have any fixed infrastructure. Therefore all nodes are able to move freely in the network and they are connected dynamically to each other in arbitrary manner. The routing protocol is used to discover a route, if mobile nodes are not within the wireless range of each other. Efficient Routing Protocol (ERP) scheme is proposed for communication in the mobile ad hoc network. ERP defines a new metric average active path count for routing. In ERP, possible routes are discovered and then select a route for communication that has less traffic. ERP decreases congestion and increase packet delivery ration which ultimately enhances the network performance. DOI: 10.17762/ijritcc2321-8169.160410

    Stopping ongoing broadcasts in large MANETs

    Get PDF
    Broadcast is a communication primitive building block widely used in mobile ad-hoc networks (MANETs) for the exchange of control packets and resource location for upper level services such as routing and management protocols. Flooding is the most simple broadcast algorithm, but it wastes a lot of energy and bandwidth, as flooding leads to many redundant radio transmissions. An optimization to flooding is to contain it, once the resource has been found. In this paper, we compare the impact on the latency and power consumption of four competing approaches for flooding containment. The results show that stopping ongoing broadcasts can achieve promising performance increases over other flooding base techniques, when applied in large scale MANETs with scarce power resources. In addition, results show that both network topology and the number of copies of the resource influence differently the performance of each searching approach.(undefined

    Improving routing performance of multipath ad hoc on-demand distance vector in mobile add hoc networks.

    Get PDF
    The aim of this research is to improve routing fault tolerance in Mobile Ad hoc Networks (MANETs) by optimising mUltipath routing in a well-studied reactive and single path routing protocol known as Ad hoc On-demand Distance Vector (AODV). The research also aims to prove the effect of varying waiting time of Route Reply (RREP) procedure and utilising the concept of efficient routes on the performance of multipath extensions to AODV. Two novel multipath routing approaches are developed in this thesis as new extensions to AODV to optimise routing overhead by improving Route Discovery Process (RDP) and Route Maintenance Process (RMP) of multipath AODV. The first approach is a Iinkdisjoint multipath extension called 'Thresho)d efficient Routes in multipath AODV' (TRAODV) that optimises routing packets ~verhead by improving the RDP of AODV which is achieved by detecting the waiting time required for RREP procedure to receive a threshold number of efficient routes. The second approach is also a link-disjoint mUltipath extension called 'On-demand Route maintenance in Multipath AoDv' (ORMAD) which is an extension to TRAODV that optimises routing packets and delay overhead by improving the RMP of TRAODV. ORMAD applies the concepts of threshold waiting time and efficient routes to both phases RDP and RMP. It also applies RMP only to efficient routes which are selected in the RDP and when a route fails, it invokes a local repair procedure between upstream and downstream nodes of the broken link. This mechanism produces a set of alternative subroutes with less number of hops which enhances route efficiency and consequently minimises the routing overhead. TRAODV and ORMAD are implemented and evaluated against two existing multipath extensions to,AODV protocol and two traditional multipath protocols. The existing extensions to AODV used in the evaluation are a well-known protocol called Ad hoc On-demand Multipath Distance Vector (AOMDV) and a recent extension called Multiple Route AODV (MRAODV) protocol which is extended in this thesis to the new approach TRAODV while the traditional multipath protocols used in the evaluation are Dynamic Source Routing (DSR) and Temporally Ordered Routing Algorithm (TORA). Protocols are implemented using NS2 and evaluated under the same simulation environment in terms of four performance metrics; packet delivery fraction, average end-to-end delay, routing packets overhead, and throughput. Simulation results of TRAODV evaluation show that the average number of routes stored in a routing table of MRAODV protocol is always larger than the average number of routes in TRAODV. Simulation results show that TRAODV reduces the overall routing packets overhead compared to both extensions AOMDV and MRAODV, especially for large network size and high mobility. A vital drawback of TRAODV is that its performance is reduced compared to AOMDV and MRAODV in terms of average end-to-end delay. Additionally, TORA still outperforms TRAODV and the other extensions to AODV in terms of routing packets overhead. In order to overcome the drawbacks of TRAODV, ORMAD is developed by improving the RDP of TRAODV. The performance of ORMAD is evaluated against RREP waiting time using the idea of utilising the efficient routes in both phases RDP and RMP. Simulation results of ORMAD show that the performance is affected by varying the two RREP waiting times of both RDP and RMP in different scenarios. As shown by the simulation results, applying the short and long waiting times in both phases tends to less performance in terms of routing packets overhead while applying the moderate waiting times tends to better performance. ORMAD enhances routing packets overhead and the average end-to-end delay compared to TRAODV, especially in high mobility scenarios. ORMAD has the closest performance to TORA protocol in terms of routing packets overhead compared to ~M~a~M~OW . Relevant concepts are formalised for ORMAD approach and conducted as an analytical model in this thesis involving the\vhole process of multipath routing in AODV extensions. ORMAD analytical model describes how the two phases RDP and RMP interact with each other with regard to two performance metrics; total number of detected routes and Route Efficiency.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A cross-layer middleware architecture for time and safety critical applications in MANETs

    Get PDF
    Mobile Ad hoc Networks (MANETs) can be deployed instantaneously and adaptively, making them highly suitable to military, medical and disaster-response scenarios. Using real-time applications for provision of instantaneous and dependable communications, media streaming, and device control in these scenarios is a growing research field. Realising timing requirements in packet delivery is essential to safety-critical real-time applications that are both delay- and loss-sensitive. Safety of these applications is compromised by packet loss, both on the network and by the applications themselves that will drop packets exceeding delay bounds. However, the provision of this required Quality of Service (QoS) must overcome issues relating to the lack of reliable existing infrastructure, conservation of safety-certified functionality. It must also overcome issues relating to the layer-2 dynamics with causal factors including hidden transmitters and fading channels. This thesis proposes that bounded maximum delay and safety-critical application support can be achieved by using cross-layer middleware. Such an approach benefits from the use of established protocols without requiring modifications to safety-certified ones. This research proposes ROAM: a novel, adaptive and scalable cross-layer Real-time Optimising Ad hoc Middleware framework for the provision and maintenance of performance guarantees in self-configuring MANETs. The ROAM framework is designed to be scalable to new optimisers and MANET protocols and requires no modifications of protocol functionality. Four original contributions are proposed: (1) ROAM, a middleware entity abstracts information from the protocol stack using application programming interfaces (APIs) and that implements optimisers to monitor and autonomously tune conditions at protocol layers in response to dynamic network conditions. The cross-layer approach is MANET protocol generic, using minimal imposition on the protocol stack, without protocol modification requirements. (2) A horizontal handoff optimiser that responds to time-varying link quality to ensure optimal and most robust channel usage. (3) A distributed contention reduction optimiser that reduces channel contention and related delay, in response to detection of the presence of a hidden transmitter. (4) A feasibility evaluation of the ROAM architecture to bound maximum delay and jitter in a comprehensive range of ns2-MIRACLE simulation scenarios that demonstrate independence from the key causes of network dynamics: application setting and MANET configuration; including mobility or topology. Experimental results show that ROAM can constrain end-to-end delay, jitter and packet loss, to support real-time applications with critical timing requirements

    Investigating TCP performance in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) have become increasingly important in view of their promise of ubiquitous connectivity beyond traditional fixed infrastructure networks. Such networks, consisting of potentially highly mobile nodes, have provided new challenges by introducing special consideration stemming from the unique characteristics of the wireless medium and the dynamic nature of the network topology. The TCP protocol, which has been widely deployed on a multitude of internetworks including the Internet, is naturally viewed as the de facto reliable transport protocol for use in MANETs. However, assumptions made at TCP’s inception reflected characteristics of the prevalent wired infrastructure of networks at the time and could subsequently lead to sub-optimal performance when used in wireless ad hoc environments. The basic presupposition underlying TCP congestion control is that packet losses are predominantly an indication of congestion in the network. The detrimental effect of such an assumption on TCP’s performance in MANET environments has been a long-standing research problem. Hence, previous work has focused on addressing the ambiguity behind the cause of packet loss as perceived by TCP by proposing changes at various levels across the network protocol stack, such as at the MAC mechanism of the transceiver or via coupling with the routing protocol at the network layer. The main challenge addressed by the current work is to propose new methods to ameliorate the illness-effects of TCP’s misinterpretation of the causes of packet loss in MANETs. An assumed restriction on any proposed modifications is that resulting performance increases should be achievable by introducing limited changes confined to the transport layer. Such a restriction aids incremental adoption and ease of deployment by requiring minimal implementation effort. Further, the issue of packet loss ambiguity, from a transport layer perspective, has, by definition, to be dealt with in an end-to-end fashion. As such, a proposed solution may involve implementation at the sender, the receiver or both to address TCP shortcomings. Some attempts at describing TCP behaviour in MANETs have been previously reported in the literature. However, a thorough enquiry into the performance of those TCP agents popular in terms of research and adoption has been lacking. Specifically, very little work has been performed on an exhaustive analysis of TCP variants across different MANET routing protocols and under various mobility conditions. The first part of the dissertation addresses this shortcoming through extensive simulation evaluation in order to ascertain the relative performance merits of each TCP variant in terms of achieved goodput over dynamic topologies. Careful examination reveals sub-par performance of TCP Reno, the largely equivalent performance of NewReno and SACK, whilst the effectiveness of a proactive TCP variant (Vegas) is explicitly stated and justified for the first time in a dynamic MANET environment. Examination of the literature reveals that in addition to losses caused by route breakages, the hidden terminal effect contributes significantly to non-congestion induced packet losses in MANETs, which in turn has noticeably negative impact on TCP goodput. By adapting the conservative slow start mechanism of TCP Vegas into a form suitable for reactive TCP agents, like Reno, NewReno and SACK, the second part of the dissertation proposes a new Reno-based congestion avoidance mechanism which increases TCP goodput considerably across long paths by mitigating the negative effects of hidden terminals and alleviating some of the ambiguity of non-congestion related packet loss in MANETs. The proposed changes maintain intact the end-to-end semantics of TCP and are solely applicable to the sender. The new mechanism is further contrasted with an existing transport layer-focused solution and is shown to perform significantly better in a range of dynamic scenarios. As solution from an end-to-end perspective may be applicable to either or both communicating ends, the idea of implementing receiver-side alterations is also explored. Previous work has been primarily concerned with reducing receiver-generated cumulative ACK responses by “bundling” them into as few packets as possible thereby reducing misinterpretations of packet loss due to hidden terminals. However, a thorough evaluation of such receiver-side solutions reveals limitations in common evaluation practices and the solutions themselves. In an effort to address this shortcoming, the third part of this research work first specifies a tighter problem domain, identifying the circumstances under which the problem may be tackled by an end-to-end solution. Subsequent original analysis reveals that by taking into account optimisations possible in wireless communications, namely the partial or complete omission of the RTS/CTS handshake, noticeable improvements in TCP goodput are achievable especially over long paths. This novel modification is activated in a variety of topologies and is assessed using new metrics to more accurately gauge its effectiveness in a wireless multihop environment

    Zone Partition Based Routing Protocol In MANET

    Get PDF
    ABSTRACT -Mobile ad hoc networks use anonymous routing protocol that hide sender receiver location and routes from outside attackers and also gives anonymity protection of wireless network. However, existing anonymous routing protocols mainly based on hop-byhop encryption or redundant traffic, but it's generate high cost and cannot provide full anonymity protection. To offer high anonymity protection, we propose a zone partition based routing protocol. Zone partition based routing protocol dynamically partitions the entire network field into zones and randomly select nodes in zone as intermediate relay nodes, it's form a no traceable anonymous route. Zones contain nodes varies during packet transmissions, so outside observers cannot find packet transmission path. Unfortunately sometime outside observer find sender, receiver locations and route, so this project also proposed neighbor coverage based probabilistic rebroadcast protocol. This protocol correctly indentify attacker's node and preventing from outside attackers. These protocols offer high anonymity protection of entire wireless network. It also effectively prevents the intersection and timing attacks

    Variable power transmission in highly Mobile Ad-Hoc Networks

    Get PDF
    Mobile Ad Hoc Networks pose challenges in terms of power control, due to their fixed transmission power, the mobility of nodes and a constantly changing topology. High levels of power are needed in wireless networks, particularly for routing. As a result of the increase in the number of communication devices being used, there is the challenge of increased density within these networks, and a need to extend the battery life of communication devices. In order to address this challenge, this thesis presents the development of a new protocol (Dynamic Power AODV), which is an enhancement of the Ad Hoc On Demand Distance Vector (AODV) protocol. The new protocol dynamically adjusts the transmission power based on the range, which depends on node density. This thesis provides a systematic evaluation of the performance of DP-AODV, in a high speed and high density environment, in comparison with three other routing protocols. The experiments demonstrated that DP-AODV performed better than two of the protocols in all scenarios. As compared to the third protocol (AOMDV), DP-AODV gave better performance results for throughput and Power Consumption, but AOMDV performed better in terms of Packet Delivery Fraction rate and End-to-End Delay in some cases
    corecore