20,484 research outputs found

    Metropolis Sampling

    Full text link
    Monte Carlo (MC) sampling methods are widely applied in Bayesian inference, system simulation and optimization problems. The Markov Chain Monte Carlo (MCMC) algorithms are a well-known class of MC methods which generate a Markov chain with the desired invariant distribution. In this document, we focus on the Metropolis-Hastings (MH) sampler, which can be considered as the atom of the MCMC techniques, introducing the basic notions and different properties. We describe in details all the elements involved in the MH algorithm and the most relevant variants. Several improvements and recent extensions proposed in the literature are also briefly discussed, providing a quick but exhaustive overview of the current Metropolis-based sampling's world.Comment: Wiley StatsRef-Statistics Reference Online, 201

    Reduced Complexity Filtering with Stochastic Dominance Bounds: A Convex Optimization Approach

    Full text link
    This paper uses stochastic dominance principles to construct upper and lower sample path bounds for Hidden Markov Model (HMM) filters. Given a HMM, by using convex optimization methods for nuclear norm minimization with copositive constraints, we construct low rank stochastic marices so that the optimal filters using these matrices provably lower and upper bound (with respect to a partially ordered set) the true filtered distribution at each time instant. Since these matrices are low rank (say R), the computational cost of evaluating the filtering bounds is O(XR) instead of O(X2). A Monte-Carlo importance sampling filter is presented that exploits these upper and lower bounds to estimate the optimal posterior. Finally, using the Dobrushin coefficient, explicit bounds are given on the variational norm between the true posterior and the upper and lower bounds

    Dynamic importance sampling for uniformly recurrent markov chains

    Full text link
    Importance sampling is a variance reduction technique for efficient estimation of rare-event probabilities by Monte Carlo. In standard importance sampling schemes, the system is simulated using an a priori fixed change of measure suggested by a large deviation lower bound analysis. Recent work, however, has suggested that such schemes do not work well in many situations. In this paper we consider dynamic importance sampling in the setting of uniformly recurrent Markov chains. By ``dynamic'' we mean that in the course of a single simulation, the change of measure can depend on the outcome of the simulation up till that time. Based on a control-theoretic approach to large deviations, the existence of asymptotically optimal dynamic schemes is demonstrated in great generality. The implementation of the dynamic schemes is carried out with the help of a limiting Bellman equation. Numerical examples are presented to contrast the dynamic and standard schemes.Comment: Published at http://dx.doi.org/10.1214/105051604000001016 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Asymptotic optimality of the cross-entropy method for Markov chain problems

    Get PDF
    The correspondence between the cross-entropy method and the zero-variance approximation to simulate a rare event problem in Markov chains is shown. This leads to a sufficient condition that the cross-entropy estimator is asymptotically optimal.Comment: 13 pager; 3 figure

    Non-reversible Metropolis-Hastings

    Get PDF
    The classical Metropolis-Hastings (MH) algorithm can be extended to generate non-reversible Markov chains. This is achieved by means of a modification of the acceptance probability, using the notion of vorticity matrix. The resulting Markov chain is non-reversible. Results from the literature on asymptotic variance, large deviations theory and mixing time are mentioned, and in the case of a large deviations result, adapted, to explain how non-reversible Markov chains have favorable properties in these respects. We provide an application of NRMH in a continuous setting by developing the necessary theory and applying, as first examples, the theory to Gaussian distributions in three and nine dimensions. The empirical autocorrelation and estimated asymptotic variance for NRMH applied to these examples show significant improvement compared to MH with identical stepsize.Comment: in Statistics and Computing, 201

    Calculating principal eigen-functions of non-negative integral kernels: particle approximations and applications

    Get PDF
    Often in applications such as rare events estimation or optimal control it is required that one calculates the principal eigen-function and eigen-value of a non-negative integral kernel. Except in the finite-dimensional case, usually neither the principal eigen-function nor the eigen-value can be computed exactly. In this paper, we develop numerical approximations for these quantities. We show how a generic interacting particle algorithm can be used to deliver numerical approximations of the eigen-quantities and the associated so-called "twisted" Markov kernel as well as how these approximations are relevant to the aforementioned applications. In addition, we study a collection of random integral operators underlying the algorithm, address some of their mean and path-wise properties, and obtain LrL_{r} error estimates. Finally, numerical examples are provided in the context of importance sampling for computing tail probabilities of Markov chains and computing value functions for a class of stochastic optimal control problems.Comment: 38 pages, 4 figures, 1 table; to appear in Mathematics of Operations Researc

    Scalable Inference for Markov Processes with Intractable Likelihoods

    Full text link
    Bayesian inference for Markov processes has become increasingly relevant in recent years. Problems of this type often have intractable likelihoods and prior knowledge about model rate parameters is often poor. Markov Chain Monte Carlo (MCMC) techniques can lead to exact inference in such models but in practice can suffer performance issues including long burn-in periods and poor mixing. On the other hand approximate Bayesian computation techniques can allow rapid exploration of a large parameter space but yield only approximate posterior distributions. Here we consider the combined use of approximate Bayesian computation (ABC) and MCMC techniques for improved computational efficiency while retaining exact inference on parallel hardware
    • …
    corecore