51,887 research outputs found

    Stochastic Distributed Control for Arbitrarily Connected Microgrid Clusters

    Get PDF
    Due to the success of single microgrids, the coming years are likely to see a transformation of the current electric power system to a multiple microgrid network. Despite its obvious promise, however, this paradigm still faces many challenges, particularly when it comes to the control and coordination of energy exchanges between subsystems. In view of that, in this paper we propose an optimal stochastic control strategy in which microgrids are modeled as stochastic hybrid dynamic systems. The optimal control is based on the jump linear theory and is used as a means to maximize energy storage and the utilization of renewable energy sources in islanded microgrid clusters. Once the gain matrices are obtained, the concept of #-suboptimality is applied to determine appropriate levels of power exchange between microgrids for any given interconnection pattern. It is shown that this approach can be efficiently applied to large-scale systems and guarantees their connective stability. Simulation results for a three microgrid cluster are provided as proof of concept

    Stochastic Event-Based Control and Estimation

    Get PDF
    Digital controllers are traditionally implemented using periodic sampling, computation, and actuation events. As more control systems are implemented to share limited network and CPU bandwidth with other tasks, it is becoming increasingly attractive to use some form of event-based control instead, where precious events are used only when needed. Forms of event-based control have been used in practice for a very long time, but mostly in an ad-hoc way. Though optimal solutions to most event-based control problems are unknown, it should still be viable to compare performance between suggested approaches in a reasonable manner. This thesis investigates an event-based variation on the stochastic linear-quadratic (LQ) control problem, with a fixed cost per control event. The sporadic constraint of an enforced minimum inter-event time is introduced, yielding a mixed continuous-/discrete-time formulation. The quantitative trade-off between event rate and control performance is compared between periodic and sporadic control. Example problems for first-order plants are investigated, for a single control loop and for multiple loops closed over a shared medium. Path constraints are introduced to model and analyze higher-order event-based control systems. This component-based approach to stochastic hybrid systems allows to express continuous- and discrete-time dynamics, state and switching constraints, control laws, and stochastic disturbances in the same model. Sum-of-squares techniques are then used to find bounds on control objectives using convex semidefinite programming. The thesis also considers state estimation for discrete time linear stochastic systems from measurements with convex set uncertainty. The Bayesian observer is considered given log-concave process disturbances and measurement likelihoods. Strong log-concavity is introduced, and it is shown that the observer preserves log-concavity, and propagates strong log-concavity like inverse covariance in a Kalman filter. A recursive state estimator is developed for systems with both stochastic and set-bounded process and measurement noise terms. A time-varying linear filter gain is optimized using convex semidefinite programming and ellipsoidal over-approximation, given a relative weight on the two kinds of error

    Different Approaches on Stochastic Reachability as an Optimal Stopping Problem

    Get PDF
    Reachability analysis is the core of model checking of time systems. For stochastic hybrid systems, this safety verification method is very little supported mainly because of complexity and difficulty of the associated mathematical problems. In this paper, we develop two main directions of studying stochastic reachability as an optimal stopping problem. The first approach studies the hypotheses for the dynamic programming corresponding with the optimal stopping problem for stochastic hybrid systems. In the second approach, we investigate the reachability problem considering approximations of stochastic hybrid systems. The main difficulty arises when we have to prove the convergence of the value functions of the approximating processes to the value function of the initial process. An original proof is provided

    Mathematical control of complex systems

    Get PDF
    Copyright Ā© 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    • ā€¦
    corecore