6,527 research outputs found

    Interval Prediction for Continuous-Time Systems with Parametric Uncertainties

    Get PDF
    The problem of behaviour prediction for linear parameter-varying systems is considered in the interval framework. It is assumed that the system is subject to uncertain inputs and the vector of scheduling parameters is unmeasurable, but all uncertainties take values in a given admissible set. Then an interval predictor is designed and its stability is guaranteed applying Lyapunov function with a novel structure. The conditions of stability are formulated in the form of linear matrix inequalities. Efficiency of the theoretical results is demonstrated in the application to safe motion planning for autonomous vehicles.Comment: 6 pages, CDC 2019. Website: https://eleurent.github.io/interval-prediction

    Convex Chance Constrained Model Predictive Control

    Full text link
    We consider the Chance Constrained Model Predictive Control problem for polynomial systems subject to disturbances. In this problem, we aim at finding optimal control input for given disturbed dynamical system to minimize a given cost function subject to probabilistic constraints, over a finite horizon. The control laws provided have a predefined (low) risk of not reaching the desired target set. Building on the theory of measures and moments, a sequence of finite semidefinite programmings are provided, whose solution is shown to converge to the optimal solution of the original problem. Numerical examples are presented to illustrate the computational performance of the proposed approach.Comment: This work has been submitted to the 55th IEEE Conference on Decision and Contro

    Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression

    Full text link
    In this paper, we revisit batch state estimation through the lens of Gaussian process (GP) regression. We consider continuous-discrete estimation problems wherein a trajectory is viewed as a one-dimensional GP, with time as the independent variable. Our continuous-time prior can be defined by any nonlinear, time-varying stochastic differential equation driven by white noise; this allows the possibility of smoothing our trajectory estimates using a variety of vehicle dynamics models (e.g., `constant-velocity'). We show that this class of prior results in an inverse kernel matrix (i.e., covariance matrix between all pairs of measurement times) that is exactly sparse (block-tridiagonal) and that this can be exploited to carry out GP regression (and interpolation) very efficiently. When the prior is based on a linear, time-varying stochastic differential equation and the measurement model is also linear, this GP approach is equivalent to classical, discrete-time smoothing (at the measurement times); when a nonlinearity is present, we iterate over the whole trajectory to maximize accuracy. We test the approach experimentally on a simultaneous trajectory estimation and mapping problem using a mobile robot dataset.Comment: Submitted to Autonomous Robots on 20 November 2014, manuscript # AURO-D-14-00185, 16 pages, 7 figure

    Implementation of min–max MPC using hinging hyperplanes. Application to a heat exchanger

    Get PDF
    Min–max model predictive control (MMMPC) is one of the few control techniques able to cope with modelling errors or uncertainties in an explicit manner. The implementation of MMMPC suffers a large computational burden due to the numerical min–max problem that has to be solved at every sampling time. This fact severely limits the range of processes to which this control structure can be applied. An implementation scheme based on hinging hyperplanes that overcome these problems is presented here. Experimental results obtained when applying the controller to the heat exchanger of a pilot plant are given.Ministerio de Ciencia y Tecnología DPI2001-2380-C02-01Ministerio de Ciencia y Tecnología DPI2002-04375-C03-0
    • …
    corecore