3,536 research outputs found

    On Optimal Binary One-Error-Correcting Codes of Lengths 2m42^m-4 and 2m32^m-3

    Full text link
    Best and Brouwer [Discrete Math. 17 (1977), 235-245] proved that triply-shortened and doubly-shortened binary Hamming codes (which have length 2m42^m-4 and 2m32^m-3, respectively) are optimal. Properties of such codes are here studied, determining among other things parameters of certain subcodes. A utilization of these properties makes a computer-aided classification of the optimal binary one-error-correcting codes of lengths 12 and 13 possible; there are 237610 and 117823 such codes, respectively (with 27375 and 17513 inequivalent extensions). This completes the classification of optimal binary one-error-correcting codes for all lengths up to 15. Some properties of the classified codes are further investigated. Finally, it is proved that for any m4m \geq 4, there are optimal binary one-error-correcting codes of length 2m42^m-4 and 2m32^m-3 that cannot be lengthened to perfect codes of length 2m12^m-1.Comment: Accepted for publication in IEEE Transactions on Information Theory. Data available at http://www.iki.fi/opottone/code

    The Perfect Binary One-Error-Correcting Codes of Length 15: Part II--Properties

    Full text link
    A complete classification of the perfect binary one-error-correcting codes of length 15 as well as their extensions of length 16 was recently carried out in [P. R. J. \"Osterg{\aa}rd and O. Pottonen, "The perfect binary one-error-correcting codes of length 15: Part I--Classification," IEEE Trans. Inform. Theory vol. 55, pp. 4657--4660, 2009]. In the current accompanying work, the classified codes are studied in great detail, and their main properties are tabulated. The results include the fact that 33 of the 80 Steiner triple systems of order 15 occur in such codes. Further understanding is gained on full-rank codes via switching, as it turns out that all but two full-rank codes can be obtained through a series of such transformations from the Hamming code. Other topics studied include (non)systematic codes, embedded one-error-correcting codes, and defining sets of codes. A classification of certain mixed perfect codes is also obtained.Comment: v2: fixed two errors (extension of nonsystematic codes, table of coordinates fixed by symmetries of codes), added and extended many other result

    A linear construction for certain Kerdock and Preparata codes

    Full text link
    The Nordstrom-Robinson, Kerdock, and (slightly modified) Pre\- parata codes are shown to be linear over \ZZ_4, the integers mod 4\bmod~4. The Kerdock and Preparata codes are duals over \ZZ_4, and the Nordstrom-Robinson code is self-dual. All these codes are just extended cyclic codes over \ZZ_4. This provides a simple definition for these codes and explains why their Hamming weight distributions are dual to each other. First- and second-order Reed-Muller codes are also linear codes over \ZZ_4, but Hamming codes in general are not, nor is the Golay code.Comment: 5 page

    Unordered Error-Correcting Codes and their Applications

    Get PDF
    We give efficient constructions for error correcting unordered {ECU) codes, i.e., codes such that any pair of codewords are at a certain minimal distance apart and at the same time they are unordered. These codes are used for detecting a predetermined number of (symmetric) errors and for detecting all unidirectional errors. We also give an application in parallel asynchronous communications

    The Weights in MDS Codes

    Full text link
    The weights in MDS codes of length n and dimension k over the finite field GF(q) are studied. Up to some explicit exceptional cases, the MDS codes with parameters given by the MDS conjecture are shown to contain all k weights in the range n-k+1 to n. The proof uses the covering radius of the dual codeComment: 5 pages, submitted to IEEE Trans. IT. This version 2 is the revised version after the refereeing process. Accepted for publicatio

    X-code: MDS array codes with optimal encoding

    Get PDF
    We present a new class of MDS (maximum distance separable) array codes of size n×n (n a prime number) called X-code. The X-codes are of minimum column distance 3, namely, they can correct either one column error or two column erasures. The key novelty in X-code is that it has a simple geometrical construction which achieves encoding/update optimal complexity, i.e., a change of any single information bit affects exactly two parity bits. The key idea in our constructions is that all parity symbols are placed in rows rather than columns
    corecore