76 research outputs found

    On Optimal Backward Perturbation Analysis for the Linear System with Skew Circulant Coefficient Matrix

    Get PDF
    We first give the style spectral decomposition of a special skew circulant matrix C and then get the style decomposition of arbitrary skew circulant matrix by making use of the Kronecker products between the elements of first row in skew circulant and the special skew circulant C. Besides that, we obtain the singular value of skew circulant matrix as well. Finally, we deal with the optimal backward perturbation analysis for the linear system with skew circulant coefficient matrix on the base of its style spectral decomposition

    The Determinants, Inverses, Norm, and Spread of Skew Circulant Type Matrices Involving Any Continuous Lucas Numbers

    Get PDF
    We consider the skew circulant and skew left circulant matrices with any continuous Lucas numbers. Firstly, we discuss the invertibility of the skew circulant matrices and present the determinant and the inverse matrices by constructing the transformation matrices. Furthermore, the invertibility of the skew left circulant matrices is also discussed. We obtain the determinants and the inverse matrices of the skew left circulant matrices by utilizing the relationship between skew left circulant matrices and skew circulant matrix, respectively. Finally, the four kinds of norms and bounds for the spread of these matrices are given, respectively

    Networked systems with incomplete information

    Get PDF
    Copyright © 2015 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In this special issue, we have solicited submissions from electrical engineers, control engineers, computer scientists, and mathematicians. After a rigorous peer review process, 18 papers have been selected that provide overviews, solutions, or early promises, to manage, analyse, and interpret dynamical behaviours of networked systems. These papers have covered both the theoretical and practical aspects of networked system with incomplete information in the broad areas of dynamical systems, mathematics, statistics, operational research, and engineering

    Spectral features of matrix-sequences, GLT, symbol, and application in preconditioning Krylov methods, image deblurring, and multigrid algorithms.

    Get PDF
    The final purpose of any scientific discipline can be regarded as the solution of real-world problems. With this aim, a mathematical modeling of the considered phenomenon is often compulsory. Closed-form solutions of the arising functional equations are usually not available and numerical discretization techniques are required. In this setting, the discretization of an infinite-dimensional linear equation via some linear approximation method, leads to a sequence of linear systems of increasing dimension whose coefficient matrices could inherit a structure from the continuous problem. For instance, the numerical approximation by local methods of constant or nonconstant coefficients systems of Partial Differential Equations (PDEs) over multidimensional domains, gives rise to multilevel block Toeplitz or to Generalized Locally Toeplitz (GLT) sequences, respectively. In the context of structured matrices, the convergence properties of iterative methods, like multigrid or preconditioned Krylov techniques, are strictly related to the notion of symbol, a function whose role relies in describing the asymptotical distribution of the spectrum. This thesis can be seen as a byproduct of the combined use of powerful tools like symbol, spectral distribution, and GLT, when dealing with the numerical solution of structured linear systems. We approach such an issue both from a theoretical and practical viewpoint. On the one hand, we enlarge some known spectral distribution tools by proving the eigenvalue distribution of matrix-sequences obtained as combination of some algebraic operations on multilevel block Toeplitz matrices. On the other hand, we take advantage of the obtained results for designing efficient preconditioning techniques. Moreover, we focus on the numerical solution of structured linear systems coming from the following applications: image deblurring, fractional diffusion equations, and coupled PDEs. A spectral analysis of the arising structured sequences allows us either to study the convergence and predict the behavior of preconditioned Krylov and multigrid methods applied to the coefficient matrices, or to design effective preconditioners and multigrid solvers for the associated linear systems

    Some fast algorithms in signal and image processing.

    Get PDF
    Kwok-po Ng.Thesis (Ph.D.)--Chinese University of Hong Kong, 1995.Includes bibliographical references (leaves 138-139).AbstractsSummaryIntroduction --- p.1Summary of the papers A-F --- p.2Paper A --- p.15Paper B --- p.36Paper C --- p.63Paper D --- p.87Paper E --- p.109Paper F --- p.12

    Spectral features of matrix-sequences, GLT, symbol, and application in preconditioning Krylov methods, image deblurring, and multigrid algorithms.

    Get PDF
    The final purpose of any scientific discipline can be regarded as the solution of real-world problems. With this aim, a mathematical modeling of the considered phenomenon is often compulsory. Closed-form solutions of the arising functional equations are usually not available and numerical discretization techniques are required. In this setting, the discretization of an infinite-dimensional linear equation via some linear approximation method, leads to a sequence of linear systems of increasing dimension whose coefficient matrices could inherit a structure from the continuous problem. For instance, the numerical approximation by local methods of constant or nonconstant coefficients systems of Partial Differential Equations (PDEs) over multidimensional domains, gives rise to multilevel block Toeplitz or to Generalized Locally Toeplitz (GLT) sequences, respectively. In the context of structured matrices, the convergence properties of iterative methods, like multigrid or preconditioned Krylov techniques, are strictly related to the notion of symbol, a function whose role relies in describing the asymptotical distribution of the spectrum. This thesis can be seen as a byproduct of the combined use of powerful tools like symbol, spectral distribution, and GLT, when dealing with the numerical solution of structured linear systems. We approach such an issue both from a theoretical and practical viewpoint. On the one hand, we enlarge some known spectral distribution tools by proving the eigenvalue distribution of matrix-sequences obtained as combination of some algebraic operations on multilevel block Toeplitz matrices. On the other hand, we take advantage of the obtained results for designing efficient preconditioning techniques. Moreover, we focus on the numerical solution of structured linear systems coming from the following applications: image deblurring, fractional diffusion equations, and coupled PDEs. A spectral analysis of the arising structured sequences allows us either to study the convergence and predict the behavior of preconditioned Krylov and multigrid methods applied to the coefficient matrices, or to design effective preconditioners and multigrid solvers for the associated linear systems

    GMRES-Accelerated ADMM for Quadratic Objectives

    Full text link
    We consider the sequence acceleration problem for the alternating direction method-of-multipliers (ADMM) applied to a class of equality-constrained problems with strongly convex quadratic objectives, which frequently arise as the Newton subproblem of interior-point methods. Within this context, the ADMM update equations are linear, the iterates are confined within a Krylov subspace, and the General Minimum RESidual (GMRES) algorithm is optimal in its ability to accelerate convergence. The basic ADMM method solves a Îş\kappa-conditioned problem in O(Îş)O(\sqrt{\kappa}) iterations. We give theoretical justification and numerical evidence that the GMRES-accelerated variant consistently solves the same problem in O(Îş1/4)O(\kappa^{1/4}) iterations for an order-of-magnitude reduction in iterations, despite a worst-case bound of O(Îş)O(\sqrt{\kappa}) iterations. The method is shown to be competitive against standard preconditioned Krylov subspace methods for saddle-point problems. The method is embedded within SeDuMi, a popular open-source solver for conic optimization written in MATLAB, and used to solve many large-scale semidefinite programs with error that decreases like O(1/k2)O(1/k^{2}), instead of O(1/k)O(1/k), where kk is the iteration index.Comment: 31 pages, 7 figures. Accepted for publication in SIAM Journal on Optimization (SIOPT
    • …
    corecore