7,538 research outputs found

    Social-aware hybrid mobile offloading

    Get PDF
    Mobile offloading is a promising technique to aid the constrained resources of a mobile device. By offloading a computational task, a device can save energy and increase the performance of the mobile applications. Unfortunately, in existing offloading systems, the opportunistic moments to offload a task are often sporadic and short-lived. We overcome this problem by proposing a social-aware hybrid offloading system (HyMobi), which increases the spectrum of offloading opportunities. As a mobile device is always co- located to at least one source of network infrastructure throughout of the day, by merging cloudlet, device-to-device and remote cloud offloading, we increase the availability of offloading support. Integrating these systems is not trivial. In order to keep such coupling, a strong social catalyst is required to foster user's participation and collaboration. Thus, we equip our system with an incentive mechanism based on credit and reputation, which exploits users' social aspects to create offload communities. We evaluate our system under controlled and in-the-wild scenarios. With credit, it is possible for a device to create opportunistic moments based on user's present need. As a result, we extended the widely used opportunistic model with a long-term perspective that significantly improves the offloading process and encourages unsupervised offloading adoption in the wild

    Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have been recently considered as means to provide enhanced coverage or relaying services to mobile users (MUs) in wireless systems with limited or no infrastructure. In this paper, a UAV-based mobile cloud computing system is studied in which a moving UAV is endowed with computing capabilities to offer computation offloading opportunities to MUs with limited local processing capabilities. The system aims at minimizing the total mobile energy consumption while satisfying quality of service requirements of the offloaded mobile application. Offloading is enabled by uplink and downlink communications between the mobile devices and the UAV that take place by means of frequency division duplex (FDD) via orthogonal or non-orthogonal multiple access (NOMA) schemes. The problem of jointly optimizing the bit allocation for uplink and downlink communication as well as for computing at the UAV, along with the cloudlet's trajectory under latency and UAV's energy budget constraints is formulated and addressed by leveraging successive convex approximation (SCA) strategies. Numerical results demonstrate the significant energy savings that can be accrued by means of the proposed joint optimization of bit allocation and cloudlet's trajectory as compared to local mobile execution as well as to partial optimization approaches that design only the bit allocation or the cloudlet's trajectory.Comment: 14 pages, 5 figures, 2 tables, IEEE Transactions on Vehicular Technolog

    Deep Learning Empowered Task Offloading for Mobile Edge Computing in Urban Informatics

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Led by industrialization of smart cities, numerous interconnected mobile devices, and novel applications have emerged in the urban environment, providing great opportunities to realize industrial automation. In this context, autonomous driving is an attractive issue, which leverages large amounts of sensory information for smart navigation while posing intensive computation demands on resource constrained vehicles. Mobile edge computing (MEC) is a potential solution to alleviate the heavy burden on the devices. However, varying states of multiple edge servers as well as a variety of vehicular offloading modes make efficient task offloading a challenge. To cope with this challenge, we adopt a deep Q-learning approach for designing optimal offloading schemes, jointly considering selection of target server and determination of data transmission mode. Furthermore, we propose an efficient redundant offloading

    Can Unlicensed Bands Be Used by Unlicensed Usage?

    Get PDF
    Since their introduction, unlicensed ISM bands have resulted in a wide range of new wireless devices and services. It is fair to say that the success of ISM was an important factor in the opening of the TV white space for unlicensed access. Further bands (e.g., 3550-3650 MHz) are being studied to support unlicensed access. Expansion of the unlicensed bands may well address one of the principle disadvantages of unlicensed (variable quality of service) which could result in a vibrant new group companies providing innovative services and better prices. However, given that many commercial mobile telephone operators are relying heavily on the unlicensed bands to manage growth in data traffic through the “offloading” strategy, the promise of these bands may be more limited than might otherwise be expected (Musey, 2013).\ud \ud Wireless data traffic has exploded in the past several years due to more capable devices and faster network technologies. While there is some debate on the trajectory of data growth, some notable reports include AT&T, which reported data growth of over 5000% from 2008 to 2010 and Cisco, who predicted that mobile data traffic will grow to 6.3 exabytes per month in average by 2015 (Hu, 2012). Although the data traffic increased dramatically, relatively little new spectrum for mobile operators has come online in the last several years; further, the “flat-rate” pricing strategy has led to declining Average Revenue Per User (ARPU) for the mobile operators. Their challenge, then, is how to satisfy the service demand with acceptable additional expenditures on infrastructure and spectrum utilization.\ud \ud A common response to this challenge has been to offload data traffic onto unlicensed (usually WiFi) networks. This can be accomplished either by establishing infrastructure (WiFi hotspots) or to use existing private networks. This phenomenon leads to two potential risks for spectrum entrants: (1) the use of offloading may overwhelm unlicensed spectrum and leave little access opportunities for newcomers; (2) the intensity of the traffic may increase interference and degrade innovative services.\ud \ud Consequently, opening more unlicensed frequency bands alone may not necessarily lead to more unlicensed usage. In this paper, we will estimate spectrum that left for unlicensed usage and analyze risks for unlicensed users in unlicensed bands in terms of access opportunities and monetary gain. We will further provide recommendations that help foster unlicensed usage in unlicensed bands
    • …
    corecore